Cylinder with Lock

Series CLS

$\varnothing 125, \varnothing 140, \varnothing 160, \varnothing 180, \varnothing 200, \varnothing 250$

A locking cylinder

emergency stops

|Manual unlocking function

Even if the air supply is cut off or discharged, the lock can be released by screwing in the manual release bolt (hexagon socket head screw).

Design minimises influence of unlocking air quality

A design largely unaffected by factors such as moisture and drainage in compressed air has been realised by separating the lock mechanism and the brake cylinder.

Can be locked in both directions

An equal holding force can be obtained on either reciprocating stroke of the cylinder.

Compact lock unit is light weight and saves space

Overall length has been reduced by using an independent brake cylinder (-15% compared to previous series). Weight reduction has also been realised through parts simplification (max. -40% compared to previous series).

ideal for intermediate stops,

 and drop prevention.

Maintenance simplified

The lock monitor makes it possible to confirm the operating state of the lock unit (brake piston) and the state of wear for each part, providing a guide for maintenance.

Series Variations

Series CLS

Model Selection

Caution on Model Selection

\triangle Caution

1. In order that the originally determined maximum speed is not exceeded, be certain to use a speed controller and adjust it so that the transfer through the total movement distance of the load is not less than the applicable movement time.
The movement time is the time that is necessary for the load to travel the total movement distance from start to finish without any intermediate stops.
2. In cases where the cylinder stroke and the movement distance of the load are different (double speed mechanism, etc.), use the movement distance of the load for selection purposes.

Example)

3. Shown below is an example of the model selection procedure for an intermediate stop application (including an emergency stop in operation). Only when locking in a drop prevention application, when no kinetic energy is applied, the maximum load weight should be determined by using graphs 5 through 7 (taking into consideration the upper limit of the load weight at a maximum speed of $100 \mathrm{~mm} / \mathrm{s}$).

Selection Example

- Load weight: $m=320 \mathrm{~kg}$
- Movement distance: $\mathrm{st}=400 \mathrm{~mm}$
- Movement time: $\mathrm{t}=2 \mathrm{~s}$
- Load condition: Vertical downward = Load in direction of rod extension
- Operating pressure: $\mathrm{P}=0.4 \mathrm{MPa}$

Step 1: From Graph 1 find the maximum movement speed of the load \therefore Maximum speed V : approx. $280 \mathrm{~mm} / \mathrm{s}$

Step 2: Select Graph 6 based upon the load condition and operating pressure. And then from the intersection of the maximum speed $\mathrm{V}=280 \mathrm{~mm} / \mathrm{s}$ found in Step 1, and the load weight $\mathrm{m}=320 \mathrm{~kg}$ $\therefore \varnothing 140 \rightarrow$ select a CLS140 or larger bore size.

Step 1 Find the maximum load speed: V.

Find the maximum load speed: V (mm/s) from the load movement time: $\mathrm{t}(\mathrm{s})$ and the movement distance: $\mathrm{st}(\mathrm{mm})$.

Graph 1

Step $2 \quad$ Find the cylinder bore size.

Select a graph based upon the load condition and operating pressure, and then find the point of intersection for the maximum speed found in Step 1 and the load weight. Select the bore size on the line above the point of intersection.

Load condition	Operating pressure
Direction of load at right angle to rod (* Being held by a guide)	

(*Being held by a guide)

Load in direction of rod extension Load in direction of rod retraction

Selection Graph

Graph 2

$0.3 \mathrm{MPa} \leq \mathrm{P}<0.4 \mathrm{MPa}$

Graph 5
$0.3 \mathrm{MPa} \leq \mathrm{P}<\mathbf{0 . 4} \mathbf{~ M P a}$

Graph 3
$0.4 \mathrm{MPa} \leq \mathrm{P}<0.5 \mathrm{MPa}$

Graph 6
$0.4 \mathrm{MPa} \leq \mathrm{P}<0.5 \mathrm{MPa}$

Graph 4
$0.5 \mathrm{MPa} \leq \mathrm{P}$

Graph 7

Cylinder with Lock
 Double Acting, Single Rod
 Series CLS
 ø125, ø140, ø160, ø180, ø200, ø250

How to Order

Cylinder Unit/Applicable Auto Switches/Refer to "SMC Best Pneumatics 2004" catalogue for further information on auto switches.

			등			Load vo	age	Auto sw	model	Lead	leng	$(\mathrm{m})^{*}$			
Type	Special function	entry	- 휸	Wiring (output)		DC	AC	Tie-rod mounting	Band mounting	$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{Z}) \end{gathered}$	connector	Applic	able load
	-	Grommet	Yes	3-wire (NPN equiv.)	-	5 V	-	A96	-	\bullet	\bullet	-	-	IC circuit	-
				2-wire	24 V	12 V	100 V	A93	-	\bullet	\bullet	-	-	-	Relay, PLC
			No			$5 \mathrm{~V}, 12 \mathrm{~V}$	100 V or less	A90	-	\bullet	\bullet	-	-	IC circuit	
			Yes			12 V	$100 \mathrm{~V}, 200 \mathrm{~V}$	A54	-	\bullet	\bullet	\bullet	-	-	
		Terminal conduit					-	-	A33	-	-	-	-		PLC
							$100 \mathrm{~V}, 200 \mathrm{~V}$	-	A34	-	-	-	-		Relay, PLC
		DIN terminal						-	A44	-	-	-	-		
	$\underset{(2 \text {-colour indicatior })}{\substack{\text { Diagnostic }}}$	Grommet				-	-	A59W	-	\bullet	\bullet	-	-		
	-	Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9N	-	\bullet	\bullet	\bigcirc	\bigcirc	IC circuit	Relay, PLC
				3-wire (PNP)				M9P	-	\bullet	\bullet	\bigcirc	\bigcirc		
				2-wire	-	-	$100 \mathrm{~V}, 200 \mathrm{~V}$	J51	-	-	-	\bigcirc	-		
					24 V	12 V	-	M9B	-	\bullet	\bullet	\bigcirc	\bigcirc		
		Terminal		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		-	G39	-	-	-	-	IC circuit	
		conduit		2-wire		12 V		-	K39	-	-	-	-	-	
	With diagnostic output (2-colour indicator)	Grommet		3 -wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NW	-	\bullet	\bullet	\bigcirc	\bigcirc	IC circuit	
				3-wire (PNP)				M9PW	-	\bullet	\bullet	\bigcirc	\bigcirc		
				2-wire		12 V		M9BW	-	\bullet	\bullet	\bigcirc	\bigcirc	-	
	Water resistant (2-colour indicator)							M9BA	-	-	\bullet	\bigcirc	\bigcirc		
	With diagnostic output (2-colour indicator)			4-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		F59F	-	\bullet	-	\bigcirc	\bigcirc	IC circuit	

* Lead wire length symbol $0.5 \mathrm{~m} \ldots$. Nil (Example) M9N
$3 \mathrm{~m} \mathrm{L}$ M9NL
5 m Z M9NZ
- There are applicable auto switches other than listed above. For details, refer to page 14.
- For details about auto switches with pre-wired connector, refer to "SMC Best Pneumatics 2004" catalogue.
* Solid state switches marked with "○" are produced upon receipt of order.

Lock Unit/Applicable Auto Switches

Type	Special function	$\begin{aligned} & \hline \text { 들 } \\ & \text { 은 } \\ & \text { 흐 } \\ & \text { 흔 } \end{aligned}$	Wiring (output)	Load voltage			Auto switch model	Lead wire length (m)			Applicable load	
				DC		AC		$\begin{gathered} 0.5 \\ (\mathrm{Nil}) \end{gathered}$	$\stackrel{3}{(L)}$	$\begin{gathered} 5 \\ (\mathrm{Z}) \end{gathered}$		
Reed switch	Grommet	Yes	2-wire	24 V	12 V	100 V	A93	\bullet	\bullet	-	-	Relay, PLC
		No			$5 \mathrm{~V}, 12 \mathrm{~V}$	100 V or less	A90	-	-	-	IC circuit	
Solid state switch	Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9N	\bullet	\bullet	\bigcirc	IC circuit	Relay, PLC
			3-wire (PNP)				M9P	\bullet	\bullet	\bigcirc		
			2-wire		12 V		M9B	\bullet	\bullet	\bigcirc	-	

Model

Series	Type	Action	Bore size (mm)	Locking action
CLS \square	Non-lube	Double acting	$125,140,160,180,200,250$	Spring locking
CDLS \square				

Cylinder Specifications

Type	Non-lube
Fluid	Air
Proof pressure	1.46 MPa $1.05 \mathrm{MPa} *$
	0.97 MPa
	$0.7 \mathrm{MPa} *$
Min. operating pressure	0.08 MPa
Piston speed	50 to $500 \mathrm{~mm} / \mathrm{s}^{* *}$
Cushion	Yes
Ambient and fluid	Without auto switch: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no freezing)
temperature	With auto swiatch: $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$

* For ø180 and ø200 with auto switches.
** There are load limitations depending on the piston speed when locked, the mounting method, and the operating pressure.

Lock Specifications

Locking action	Spring locking (exhaust locking)
Unlocking pressure	0.25 MPa or more
Locking pressure	0.20 MPa or less
Max. operating pressure	1.0 MPa
Locking direction	Both directions

Cylinder Stroke

Conditions:
Horizontal, Supply pressure $\mathrm{P}=0.5 \mathrm{MPa}$
Load weight
Upper limit of allowed value
Solenoid valve for locking ... Mounted directly to unlocking port Maximum value from range of 100 measured stopping positions

Spring Lock Holding Force (Maximum Static Load)

Bore size (mm)	125	140	160	180	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$
Holding force (KN)	8.4	10.5	13.8	17.4	21.5	33.6

* Be sure to make cylinder selections in accordance with the method given on front matter 1 .

Stopping Accuracy

Lock type	Unit: mm		
	100	300	500
Spring lock	± 0.5	± 1.0	± 2.0

		Unit: mm	
Tube material	Aluminum alloy	Carbon steel tube	
Bore size (mm)	Basic type, Head side flange type, Single clevis type, Double clevis type, Centre trunnion type, Foot type, Rod side flange type	Basic type, Head side flange type Single clevis type, Double clevis type, Centre trunnion type	Foot type Rod side flange type
125, 140	Up to 1000	Up to 1000	Up to 1600
160	Up to 1200	Up to 1200	Up to 1600
180	-	Up to 1200	Up to 2000
200	-	Up to 1200	Up to 2000
250	-	Up to 1200	Up to 2400

Cylinder Stroke/Auto Switch Mounting on Cylinder Unit (Built-in Magnet)

Bore size (mm)	Basic type, Head side flange type, Single clevis type, Double clevis type, Centre trunnion type	Foot type Rod side flange type
$\mathbf{1 2 5 , 1 4 0}$	to 1000	to 1400
$\mathbf{1 6 0}$	to 1200	to 1400
$\mathbf{1 8 0}$	to 1200	to 1500
$\mathbf{2 0 0}$	to 998	to 998
Note	For available as made to order.	For $\varnothing 200,998$ to 1500 strokes are available as made to order.

Series CLS

Mounting Bracket Part No.

Bore size (mm)	$\mathbf{1 2 5}$	$\mathbf{1 4 0}$	$\mathbf{1 6 0}$	$\mathbf{1 8 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$
Foot type $^{\text {Note 1) }}$	CS1-L12	CS1-L14	CS1-L16	CS1-L18	CS1-L20	CS1-L25
Rod side flange type $^{\text {Note 2) }}$	CS1-FL12	CS1-FL14	CS1-FL16	CS1-FL18	CS1-FL20	CS1-FL25
Head side flange type	CS1-F12	CS1-F14	CS1-F16	CS1-F18	CS1-F20	CS1-F25
Single clevis type	CS1-C12	CS1-C14	CS1-C16	CS1-C18	CS1-C20	CS1-C25
Double clevis ${ }^{\text {Note 3) }}$	CS1-D12	CS1-D14	CS1-D16	CS1-D18	CS1-D20	CS1-D25

Note 1) When ordering foot brackets, 2 pcs. should be ordered for each cylinder.
Note 2) $\varnothing 125$ to $\varnothing 250$ rod side flange types use series CS1 long stroke flanges.
Note 3) A clevis pin, flat washer and cotter pin are packed with the double clevis type.

Rod Boot Material

Symbol	Material	Max. ambient temperature
\mathbf{J}	Nylon tarpaulin	$60^{\circ} \mathrm{C}$
\mathbf{K}	Heat resistant tarpaulin	$110^{\circ} \mathrm{C}^{*}$

* Maximum ambient temperature for the rod boot itself.

Accessories

Mounting brackets		Basic type	Foot type	Rod side flange type	Head side flange type	Single clevis type	Double clevis type	Centre trunnion type
Standard equipment	Clevis pin	-	-	-	-	-	\bullet	-
Options	Rod end nut	\bullet						
	Single knuckle joint	\bullet						
	Double knuckle joint (with pin)	\bullet	\bullet	\bullet	\bullet	-	\bullet	-
	With rod boot	\bullet						

* Refer to the accessory models and dimensions on page 12.

Weight Numbers inside () are for steel tube
Unit: kg

	Bore size (mm)	125	140	160	180	200	250
	Lock unit weight	9.40	11.37	16.93	26.20	36.4	61.70
$\stackrel{\pi}{5}$$\stackrel{-}{01}$33000	Basic type	$\begin{array}{\|c\|} 23.49 \\ (24.96) \end{array}$	$\begin{array}{\|c\|} \hline 28.30 \\ (30.11) \\ \hline \end{array}$	$\begin{gathered} 40.87 \\ (43.08) \end{gathered}$	$\begin{gathered} 57.30 \\ (63.91) \end{gathered}$	$\begin{array}{\|c\|} \hline 75.46 \\ (82.01) \end{array}$	(138.94)
	Foot type	$\begin{array}{\|c\|} \hline 25.12 \\ (26.59) \end{array}$	$\left\|\begin{array}{c} 30.82 \\ (32.63) \end{array}\right\|$	$\begin{gathered} 43.67 \\ (45.88) \end{gathered}$	$\begin{array}{\|c\|} \hline 61.50 \\ (68.11) \end{array}$	$\begin{array}{c\|} \hline 80.34 \\ (86.89) \end{array}$	$\overline{(148.44)}$
	Flange type	$\begin{gathered} 26.17 \\ (27.64) \end{gathered}$	$\begin{gathered} 33.30 \\ (35.11) \end{gathered}$	$\begin{gathered} \hline 47.26 \\ (49.47) \end{gathered}$	$\left\|\begin{array}{c} 67.13 \\ (73.74) \end{array}\right\|$	$\begin{array}{\|c\|} \hline 87.37 \\ (93.92) \end{array}$	$\|(160.78)\|$
	Single clevis type	$\begin{array}{\|c\|} \hline 26.56 \\ (28.03) \end{array}$	$\begin{gathered} 32.59 \\ (34.40) \end{gathered}$	$\left\|\begin{array}{c} 46.36 \\ (48.57) \end{array}\right\|$	$\left\|\begin{array}{c} 65.69 \\ (72.30) \end{array}\right\|$	$\begin{array}{\|c\|} \hline 85.36 \\ (91.91) \end{array}$	$\mid(157.33)$
	Double clevis type (includes clevis pin \& cotter pin)	$\begin{gathered} 27.02 \\ (28.49) \end{gathered}$	$\begin{gathered} 33.34 \\ (35.15) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 47.21 \\ (49.42) \\ \hline \end{array}$	$\begin{array}{\|c\|} 67.37 \\ (73.98) \end{array}$	$\begin{array}{\|c\|} \hline 87.39 \\ (93.94) \\ \hline \end{array}$	(160.52)
	Centre trunnion type	$\begin{gathered} 27.62 \\ (29.09) \end{gathered}$	$\begin{gathered} 34.03 \\ (35.84) \end{gathered}$	$\left\|\begin{array}{c} 48.27 \\ (50.48) \end{array}\right\|$	$\left\lvert\, \begin{gathered} 68.46 \\ (75.07) \end{gathered}\right.$	$\begin{array}{\|c\|} \hline 89.45 \\ (96.00) \end{array}$	(166.78)
Additional weight per 100 mm of stroke		$\begin{gathered} 1.77 \\ (2.66) \end{gathered}$	$\begin{gathered} 1.96 \\ (3.01) \end{gathered}$	$\begin{gathered} 2.39 \\ (3.58) \end{gathered}$	$\begin{gathered} 2.85 \\ (4.95) \end{gathered}$	$\begin{gathered} 3.42 \\ (5.75) \end{gathered}$	$(\overline{9.08})$
.	Single knuckle	0.91	1.16	1.56	3.07	2.90	5.38
	Double knuckle (with pin)	1.37	1.81	2.48	4.74	4.59	9.22
	Rod end nut	0.16	0.16	0.23	0.33	0.56	1.01
Calculation (Ex.) CLSL140-100			Basic weight \qquad 30.82 (foot type, ø140) Additional weight \qquad 1.96/100 mm stroke Cylinder stroke \qquad 100 mm stroke$30.82+1.96 \times 100 / 100=32.78 \mathrm{~kg}$				

Cylinder Unit Auto Switch Mounting Bracket Part No.

Auto switch model	Bore size (mm)				
	125	140	160	180	200
$\begin{aligned} & \text { D-A9■, A9■V } \\ & \text { D-M9■, M9 } \mathrm{V} \\ & \text { D-M9■W, M9 WV } \\ & \text { D-M9BAL } \end{aligned}$	BS5-125	BS5-125	BS5-160	BS5-180	BS5-200
$\begin{aligned} & \text { D-A5 } \square, \text { A6 } \square, \text { A59W } \\ & \text { D-F5 } \square, \text { J5 } \\ & \text { D-F5 } \square \text { W, J59W, F5BAL } \\ & \text { D-F5 } \square \text { F, F5NTL } \end{aligned}$	BT-12	BT-12	BT-16	BT-18A	BT-20
D-A3 \square, A44, G39, K39	BS1-125	BS1-140	BS1-160	BS1-180	BS1-200
```D-Z7\square, Z80 D-Y5\square, Y6\square, Y7P, Y7PV D-Y7\squareW, Y7\squareWV D-Y7BAL```	BS4-125	BS4-125	BS4-160	BS4-180	BS4-200

## [Mounting screws set made of stainless steel]

The following set of mounting screws made of stainless steel are also available. Use it in accordance with the operating environment. (Please order the mounting band separately, since it is not included.)

BBA1: For use with D-A5/A6/F5/J5

- "D-F5BAL" switch is set on the cylinder with the stainless steel screws above when shipped. When the switches are shipped as individual parts, the BBA1 is included.


## Construction Principle



Locked condition (when air is exhausted.)

Spring locking (exhaust locking)
The brake piston actuated by the force of the spring turns the eccentric cam shaft via the brake lever. This turning force distorts the brake shoe holder due to the wedge effect of the cam, acting on the brake shoe and locking the piston rod by tightening on it with a large force.
Unlocking occurs when air pressure is supplied to the unlocking port, causing the brake piston to counteract the force of the spring and push the brake lever back. This removes the force which is distorting the shoe holder and unlocks the piston rod.

Construction


Component Parts

No.	Description	Material	Note
1	Cover A	Aluminum alloy	Black hard anodized (0125, 0140, 0160)
			Hard anodized \& coated (0180, 0200, 0250)
2	Cover B	Aluminum alloy	Black hard anodized (0125, 1140,0160 )
			Hard anodized \& coated (0180, 0200, 0250)
3	Thrust washer A	Carbon steel	Electroless nickel plated (0125, 0140, 1100 )
			Special treatment (0180, 0200, 0250)
4	Thrust washer B	Carbon steel	Electroless nickel plated (0125, 0140, ,110)
5	Brake shoe holder A	Chromium molybdenum steel	Special treatment
6	Brake shoe	Special friction material	
7	Eccentric cam shaft	Special steel	
8	Brake lever	Chromium molybdenum steel	Zinc chromated
9	Washer	Carbon steel	Zinc chromated
10	Needle bearing	-	
11	Needle bearing	-	
12	Stopper	Special steel	Electroless nickel plated
13	Adjustment screw	Chromium molybdenum steel	Zinc chromated
14	Conical spring washer	Spring steel	Zinc chromated
15	U nut	Carbon steel	Zinc chromated
16	Cover	Steel plate	Black zinc chromated
17	Cover holding screw	Carbon steel	
18	Cover holding bolt	Chromium molybdenum steel	Nickel plated
19	Brake tube	Aluminum alloy	Clear hard anodized
20	Brake piston A	Carbon steel	Tufftride
21	Brake piston B	Aluminum alloy	Chromated
22	Bottom plate	Aluminum alloy	Black anodized
23	Spring collar	Aluminum alloy	Black anodized
24	Brake spring	Steel wire	Zinc chromated
25	Bumper B	Polyurethane rubber	
26	Magnet	-	(With switch for lock unit)
27	Snap ring	Carbon tool steel	Phosphate coated
28	Marker	Resin	White
29	Trim plate	Resin	
30	Key	Carbon steel	
31	Brake tube holding bolt	Chromium molybdenum steel	Nickel plated
32	Manual release bolt	Chromium molybdenum steel	Nickel plated
33	Plug with breathing hole	-	Black zinc chromated
34	Retaining plate B	Aluminum alloy	
35	Retaining plate holding bolt	Chromium molybdenum steel	Nickel plated
36	Unit holding tie-rod	Carbon steel	Chromated
37	Wing nut	Carbon steel	Nickel plated
38	Conical spring washer	Spring steel	Nickel plated
39	Rod cover	Rolled steel plate	Black coated
40	Head cover	Rolled steel plate	Black coated
41	Cylinder tube	Aluminum alloy	Hard anodized ( $\varnothing 125$ to ø200)
		Carbon steel pipe	Hard chrome plated (ه125 to ø250)

## Component Parts

No.	Description	Material	Note
42	Piston	Aluminum alloy casting	In case of aluminum tube
		Cast iron	In case of steel tube
43	Piston rod	Carbon steel	Hard chrome plated
44	Retaining plate	Cast iron	Black coated (ø125, ø140, ø160)
45	Bushing	Copper alloy	
46	Valve guide	Brass	
47	Tie-rod	Carbon steel	Chromated
48	Tie-rod nut	Rolled steel plate	Black zinc chromated
49	Spring washer	Steel wire	Black zinc chromated
50	Retaining plate bolt	Chromium molybdenum steel	Black zinc chromated
51	Spring washer	Steel wire	Black zinc chromated
52	Cushion ring A	Rolled steel	Zinc chromated
53	Cushion ring B	Rolled steel	Zinc chromated
54	Cushion valve	Rolled steel	Electroless nickel plated
55	Tie-rod reinforcement ring	Rolled steel	Black coated (long stroke)
56	Wear ring	Resin	In case of aluminum tube
57	Magnet	-	For built-in magnet type
58	Piston seal	NBR	
59	Tube gasket	NBR	
60	Wiper ring	NBR	
61	Cushion seal	NBR	
62	Rod seal	NBR	
63	Piston seal	NBR	
64	Valve seal	NBR	
65	Tube gasket	NBR	
66	Piston gasket	NBR	
67	Retaining plate gasket	NBR	
68	Guide gasket	NBR	
69	Coil scraper	Phosphor bronze	( $180, \varnothing 200, \varnothing 250)$
70	Coil scraper holder	Aluminum alloy	Black anodized (ø180, ø200, ø250)

Replacement Parts: Seal Kit

Bore size $(\mathrm{mm})$	Order No.	
$\mathbf{1 2 5}$	CLS125-PS	
$\mathbf{1 4 0}$	CLS140-PS	
$\mathbf{1 6 0}$	A set of above Nos.	
$\mathbf{1 8 0}$		
$\mathbf{2 0 0}$		(60), 62), 63, (64), 65) \& 67)
$\mathbf{2 5 0}$	CLS200-PS	
	CLS250-PS	

[^0]
## Series CLS

## Dimensions

## Basic type/(B)


(mm)

Bore size (mm)	Stroke range (mm)	A	AL	B	BA	BB	BC	BD	BE	BG	BY	BZ	BV	BW	BP	C	D	E	EA	F	FA	GA	GB	GC	H	J	K	KA	M	MM	MA	MB	N
125	to 1000	50	47	145	75	18	-	-	-	-	110	136	-	-	1/4	115	36	90	59	43	14	16	107	58	110	M14 1.5	15	31	27	M30 $\times 1.5$		-	
40	to 1000	50	47	161	78	18	3	30			110	146		-	1/4	128	36	90	59	43	14	16	114	64	110	M14 1.5	15	31	27	M $30 \times 1.5$			35
160	to 1200	56	53	182	95	23	5	46	-		132	169		-	1/4	144	40	90	59	43	14	18.5	130	74	120	M16 1.5	17	36	30.5	M $36 \times 1.5$			39
180	to 1200	63	60	204	106	36	-	-	16	118	167	195	5	30	3/8	162	45	115	70	48	17	18.5	149	86	135	M18 1.5	20	41	35	M $40 \times 1.5$	M12	25	39
200	to 1200	63	60	226	124	40.5	-	-	21	131	187	216	5.5	34	3/8	182	50	115	74	48	17	18.5	165	97	135	M20 1.5	20	46	35	M $45 \times 1.5$	M16	31	39
250	to 1	71	67	277	152	58	-	-	35	155	23	261	6	42	1/2	225	60	140	86	60	20	23	200	117	160	M24x	25	56	41.5	M56 $\times 2$	M20	41	49


Bore size   $(\mathrm{mm})$	$\mathbf{P}$	$\mathbf{S}$	$\mathbf{T}$	$\mathbf{V}$	$\mathbf{W}$	$\mathbf{Z Z}$
$\mathbf{1 2 5}$	$1 / 2$	98	5	30	-	345
$\mathbf{1 4 0}$	$1 / 2$	98	5	30	8	345
$\mathbf{1 6 0}$	$3 / 4$	106	5	30	9	388.5
$\mathbf{1 8 0}$	$3 / 4$	111	-	-	-448	
$\mathbf{2 0 0}$	$3 / 4$	111	-	-	-468	
$\mathbf{2 5 0}$	1	141	-	-	-	579.5


With Rod Boot				(mm)			
Bore size   $(\mathbf{m m})$	Stroke   range   $(\mathrm{mm})$	e	f	h	$\boldsymbol{e}$	$\mathbf{Z Z}_{\mathbf{1}}$	
$\mathbf{1 2 5}$	30 to 1000	75	40	133	0.2 stroke	368	
$\mathbf{1 4 0}$	30 to 1000	75	40	133	0.2 stroke	368	
$\mathbf{1 6 0}$	30 to 1200	75	40	141	0.2 stroke	409.5	
$\mathbf{1 8 0}$	30 to 1200	85	45	153	0.2 stroke	466	
$\mathbf{2 0 0}$	30 to 1200	90	45	153	0.2 stroke	486	
$\mathbf{2 5 0}$	30 to 1200	105	55	176	0.17 stroke	595.5	


With Auto Switch				(mm)
Bore size (mm)	Stroke range (mm)	S	Without rod boot	With rod boot
			ZZ	ZZ ${ }_{1}$
125	to 1000	98	345	368
140	to 1000	98	345	368
160	to 1200	106	388.5	409.5
180	to 1200	115	452	470
200	to 998	120	477	495

## Axial foot type/(L)





Bore size (mm)	Stroke range (mm)	$\begin{array}{\|c\|} \hline \text { Long stroke } \\ \text { range } \\ (\mathrm{mm}) \end{array}$	A	AL	B	BA	BB	BC	BD	BE	BG	BY	BZ	BV		BP	C	D	E	EA	F	FA	GA	GB	GC	H	J	K	KA	LD	LH	LS	LT	LX	LY	M
125	to 1400	1401101600	50	47	145	75	18		-		-	110	136	-	-	1/4	115	36	90	59	43	14	16	107	58	10	M14 1.5	15	31	19	85	298	8	100	221	27
140	to 1400	1401101600	50	47	161	78	18	3	30	-	-	110	146	-	-	1/4	128	36	90	59	43	14	16	114	64	10	M14 1.5	15	31	19	100	298	9	112	246	27
160	to 1400	140111600	56	53	182	95	23	5	46	-	-	132	169	-	-	1/4	144	40	90	59	43	14	18.5	130	74	20	M16 1.5	17	36	19	106	338	9	118	275	30.5
180	to 1800	1801102000	63	60	204	106	36	-	-	16	118	167	195	5	30	3/8	162	45	115	70	48	17	18.5	149	86	35	M18 1.5	20	41	24	125	398	10	132	320	35
200	to 1800	1801102000	63	60	226	124	40.5	-	-	21	131	187	216	5.5	34	3/8	182	50	115	74	48	17	18.5	165	97	35	M20 1.5	20	46	24	132	418	10	150	348	35
250	to 2000	2001102400	71	67	277	152	58	-	-	35	155	237	261.5	6	42	1/2	225	60	140	86	60	20	23	200	117	60	M24 $\times 1.5$	25	56	29	160	538	12	180	421.5	41.5


Bore size   $(\mathbf{m m})$	$\mathbf{M M}$	MA	MB	$\mathbf{N}$	$\mathbf{P}$	$\mathbf{R T}$	$\mathbf{R Y}$	$\mathbf{S}$	$\mathbf{T}$	$\mathbf{V}$	$\mathbf{W}$	$\mathbf{X}$	$\mathbf{Y}$	$\mathbf{Z Z}$
$\mathbf{1 2 5}$	M $30 \times 1.5$	-	-	35	$1 / 2$	36	164	98	5	30	-	45	20	383
$\mathbf{1 4 0}$	M $30 \times 1.5$	-	-	35	$1 / 2$	36	184	98	5	30	8	45	30	393
$\mathbf{1 6 0}$	M $36 \times 1.5$	-	-	39	$3 / 4$	45	204	106	5	30	9	50	25	433
$\mathbf{1 8 0}$	M40 $\times 1.5$	M12	25	39	$3 / 4$	45	228	111	-	-	-	60	30	503
$\mathbf{2 0 0}$	M45 $\times 1.5$	M16	31	39	$3 / 4$	45	257	111	-	-	-	60	30	523
$\mathbf{2 5 0}$	M56 $\times 2$	M20	41	49	1	55	325	141	-	-	-	80	40	658



With Auto Switch				(mm)		
Bore size   (mm)	Stroke   range   (mm)	$\mathbf{S}$	$\mathbf{L S}$	Without   rod   boot	With   rod   boot	
$\mathbf{1 2 5}$	to 1400	98	298	383	406	
$\mathbf{Z 4 0}$	to 1400	98	298	393	416	
$\mathbf{Z 2 Z}$	to 1400	106	338	433	454	
$\mathbf{1 8 0}$	to 1500	115	402	507	525	
$\mathbf{2 0 0}$	to 998	120	427	532	550	

## Series CLS


(mm)

Bore size (mm)	$\begin{aligned} & \hline \text { Stroke } \\ & \text { range } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{array}{c\|} \hline \text { Long stroke } \\ \text { range } \\ (\mathrm{mm}) \end{array}$	A	AL	B	BA	BB	BC	BD	BE	BG	BF	BY	BZ	BV	BW	BP	C	D	E	EA	F	FD	FT	FX	FY	FZ	GA	GB	GC	H	J	K	KA	M
125	to 1400	1401101600	50	47	145	75	18	-	-	-	-	145	110	136	-	-	1/4	115	36	90	59	43	19	14	190	100	230	16	107	58	110	M14 1.5	15	31	19
140	to 1400	1401101600	50	47	161	78	18	3	30	-	-	160	110	146	-	-	1/4	128	36	90	59	43	19	20	212	112	255	16	114	64	110	M14 1.5	15	31	19
160	to 1400	1401 to 1600	56	53	182	95	23	5	46	-	-	180	132	169	-	-	1/4	144	40	90	59	43	19	20	236	118	275	18.5	130	74	120	M16 1.5	17	36	22
180	to 1800	180102000	63	60	204	106	36	-	-	16	118	200	167	195	5	30	3/8	162	45	115	70	48	24	25	265	132	320	18.5	149	86	135	M18 1.5	20	41	26
200	to 1800	1801102000	63	60	226	124	40.5	-	-	21	131	225	187	216	5.5	34	3/8	182	50	115	74	48	24	25	280	150	335	18.5	165	97	135	M20 1.5	20	46	26
250	to 2000	2001102400	71	67	277	1525	58	-	-	35	155	275	237	261.5	6	42	1/2	225	60	140	86	60	29	30	355	180	420	23	200	117	160	M24 1.5	25	56	30


Bore size   $(\mathbf{m m})$	$\mathbf{M M}$	MA	MB	$\mathbf{N}$	$\mathbf{P}$	$\mathbf{R T}$	$\mathbf{R Y}$	$\mathbf{S}$	$\mathbf{T}$	$\mathbf{V}$	$\mathbf{W}$	$\mathbf{Z Z}$
$\mathbf{1 2 5}$	M $30 \times 1.5$	-	-	35	$1 / 2$	36	164	98	5	30	-	337
$\mathbf{1 4 0}$	M $30 \times 1.5$	-	-	35	$1 / 2$	36	184	98	5	30	8	337
$\mathbf{1 6 0}$	M $36 \times 1.5$	-	-	39	$3 / 4$	45	204	106	5	30	9	380
$\mathbf{1 8 0}$	M40 $\times 1.5$	M12	25	39	$3 / 4$	45	228	111	-	-	-	439
$\mathbf{2 0 0}$	M45 $\times 1.5$	M16	31	39	$3 / 4$	45	257	111	-	-	-	459
$\mathbf{2 5 0}$	M56 $\times 2$	M20	41	49	1	55	325	141	-	-	-	568


With Rod Boot				(mm)			
Bore size   $(\mathbf{m m})$	Stroke   range   $(\mathbf{m m})$	e	f	h	$\boldsymbol{e}$	$\mathbf{Z Z Z}_{\mathbf{1}}$	
$\mathbf{1 2 5}$	30 to 1400	75	40	133	0.2 stroke	360	
$\mathbf{1 4 0}$	30 to 1400	75	40	133	0.2 stroke	360	
$\mathbf{1 6 0}$	30 to 1400	75	40	141	0.2 stroke	401	
$\mathbf{1 8 0}$	30 to 1800	85	45	153	0.2 stroke	457	
$\mathbf{2 0 0}$	30 to 1800	90	45	153	0.2 stroke	477	
$\mathbf{2 5 0}$	30 to 2000	105	55	176	0.17 stroke	584	


With Auto Switch				(mm)
Bore size (mm)		S	Without rod boot	With rod boot
	(mm)		ZZ	ZZ ${ }_{1}$
125	to 1400	98	337	360
140	to 1400	98	337	360
160	to 1400	106	380	401
180	to 1500	115	443	461
200	to 998	120	468	486



$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$		A	AL	B	BA	BB	BC	BD	BE	BG	BF	BY	BZ	BV	BW	BP	C	D	E	EA	F	FA	FD	FT	FX	FY	FZ	GA	GB	GC	H	$J$	K	KA	M
125	to 1000	50	47	145	75	18					145	110	136	-	-	1/4	115	36	90	59	43	14	19	14	190	100	230	16	107	58	110	M14 1.5	15	31	19
40	to 1000	50	47	161	78	18	3	30			160	110	146			1/4	128	36	90	59	43	14	19	20	212	112	255	16	114	64	110	M14 1.5	15	31	19
160	to 1200	56	53	182	95	23	5	46			180	132	169	-	-	1/4	144	40	90	59	43	14	19	20	236	118	275	18.5	130	74	120	M16 1.5	17	36	22
180	to 1200	63	60	204	106	36			16	11	200	167	195	5	30	3/8	162	45	115	70	48	17	24	25	265	132	320	18.5	149	86	135	M18 1.5	20	41	6
200	to 1200	63	60	226	124	40.5			21	131	225	187	216	5.5	34	3/8	182	50	115	74	48	17	24	25	280	150	335	18.5	165	97	135	M20 1.5	20	46	26
250	O 1200	71	67	277	152	58	-	-	35	155	275	23	261.5	6	42	1/2	225	60	14	86	60	20	29	30	355	180	420	23	200	117	160	M24 1.5	25	56	


Bore size   $(\mathbf{m m})$	$\mathbf{M M}$	MA	MB	$\mathbf{N}$	$\mathbf{P}$	$\mathbf{S}$	$\mathbf{T}$	$\mathbf{V}$	$\mathbf{W}$	$\mathbf{Z Z}$
$\mathbf{1 2 5}$	M $30 \times 1.5$	-	-	35	$1 / 2$	98	5	30	-	332
$\mathbf{1 4 0}$	M $30 \times 1.5$	-	-	35	$1 / 2$	98	5	30	8	338
$\mathbf{1 6 0}$	M $36 \times 1.5$	-	-	39	$3 / 4$	106	5	30	9	378
$\mathbf{1 8 0}$	M40 $\times 1.5$	M12	25	39	$3 / 4$	111	-	-	-	438
$\mathbf{2 0 0}$	M45 $\times 1.5$	M16	31	39	$3 / 4$	111	-	-	-	458
$\mathbf{2 5 0}$	M56 $\times 2$	M20	41	49	1	141	-	-	-	568


With Rod Boot						(mm)
$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range (mm)	e	$f$	h	$\ell$	ZZ ${ }_{1}$
125	30 to 1000	75	40	133	0.2 stroke	355
140	30 to 1000	75	40	133	0.2 stroke	361
160	30 to 1200	75	40	141	0.2 stroke	399
180	30 to 1200	85	45	153	0.2 stroke	456
200	30 to 1200	90	45	153	0.2 stroke	476
250	30 to 1200	105	55	176	0.17 stroke	584


With Auto Switch				$\begin{array}{r} (\mathrm{mm}) \\ \hline \begin{array}{c} \text { With } \\ \text { rod boot } \end{array} \end{array}$
Bore size	Stroke range	S	Without rod boot	
	(mm)		ZZ	ZZ ${ }_{1}$
125	to 1000	98	332	355
140	to 1000	98	338	361
160	to 1200	106	378	399
180	to 1200	115	442	460
200	to 998	120	467	485

## Series CLS

## Dimensions

## Single clevis type/(C)



Bore size (mm)	$\begin{aligned} & \text { Stroke } \\ & \text { range } \\ & (\mathrm{mm}) \end{aligned}$	A	AL	B	BA	BB	BC	BD	BE	BG	BY	BZ	BV	BW	BP	C	CDH10	CT	CX	D	E	EA	F	FA	GA	GB	GC	H	J	K	KA	L	M
125	to 1000	50	47	145	75	18	-	-	-		110	136	-	-	1/4	115	$25_{0}^{+0.084}$	17	$32_{-0.3}^{-0.1}$	36	90	59	43	14	16	107	58	110	M14 $\times 1.5$	15	31	65	19
140	to 1000	50	47	161	78	18	3	30	-		110	146	-	-	1/4	128	$28_{0}^{+0.084}$	17	$36_{-0.3}^{-0.1}$	36	90	59	43	14	16	114	64	110	M14 1.5	15	31	75	9
160	to 1200	56	53	182	95	23	5	46	-		132	169	-	-	1/4	144	$32_{0}^{+0.100}$	20	$40_{-0.3}^{-0.1}$	40	90	59	43	14	18.5	130	74	120	M16 1.5	17	36	80	22
180	to 1200	63	60	204	106	36	-	-	16	118	167	195	5	30	3/8	162	$40^{+0.100}$	23	$50_{-0.3}^{-0.1}$	45	115	70	48	17	18.5	149	86	135	M18 1.5	20	41	90	26
200	to 1200	63	60	226	124	40.5	-	-	21	131	187	216	5.5	34	3/8	182	$40_{0}^{+0.100}$	25	$50_{-0.3}^{-0.1}$	50	115	74	48	17	18.5	165	97	135	M20 1.5	20	46	90	26
250	to 1200	71	67	277	152	58	-	-	35	155	237	261.5	6	42	1/2	225	$50^{+0.100}$	30	$63_{-0.3}^{-0.1}$	60	140	86	60	20	23	200	117	160	M24 $\times 1.5$	25	56	110	30


Bore size   $(\mathbf{m m})$	MM	MA	MB	$\mathbf{N}$	$\mathbf{P}$	$\mathbf{R R}$	$\mathbf{S}$	$\mathbf{T}$	$\mathbf{U}$	$\mathbf{V}$	$\mathbf{W}$	$\mathbf{Z}$	$\mathbf{Z Z}$
$\mathbf{1 2 5}$	M $30 \times 1.5$	-	-	35	$1 / 2$	29	98	5	35	30	-	383	412
$\mathbf{1 4 0}$	M $30 \times 1.5$	-	-	35	$1 / 2$	32	98	5	40	30	8	393	425
$\mathbf{1 6 0}$	M $36 \times 1.5$	-	-	39	$3 / 4$	36	106	5	45	30	9	438	474
$\mathbf{1 8 0}$	M40 $\times 1.5$	M12	25	39	$3 / 4$	44	111	-	50	-	-	503	547
$\mathbf{2 0 0}$	M45 $\times 1.5$	M16	31	39	$3 / 4$	44	111	-	50	-	-	523	567
$\mathbf{2 5 0}$	M56 $\times 2$	M20	41	49	1	55	141	-	65	-	-	648	703



## SSMC

## Double clevis type/(D)



Bore size (mm)	$\begin{aligned} & \hline \text { Stroke } \\ & \text { range } \\ & (\mathrm{mm}) \end{aligned}$	A	AL	B	BA	BB	BC	BD	BE	BG	BY	BZ	BV	BW	BP	C	CDh10	CT	CX	CZ	D	E	EA	F	FA	GA	GB	GC	H	$J$	K	KA	L
125	to 1000	50	47	145	75	18			-		110	136	-	-	1/4	115	$25^{+0.084}$	17	$32_{+0.1}^{+0.3}$	64-0.2	36	90	59	43	14	16	107	58	110	M14 1.5	15	31	65
140	to 1000	50	47	161	78	18	3	30	-		110	146	-	-	1/4	128	$28^{+0.084}$	17	$36_{+0.1}^{+0.3}$	$72{ }_{-0.2}^{0}$	36	90	59	43	14	16	114	64	110	M14 1.5	15	31	75
160	to 1200	56	53	182	95	23	5	46	-		132	169	-	-	1/4	144	$32_{0}^{+0.100}$	20	$40_{+0.1}^{+0.3}$	$80_{-0.2}^{0}$	40	90	59	43	14	18.5	130	74	120	M16 1.5	17	36	80
180	to 1200	63	60	204	106	36	-	-	16	118	167	195	5	30	3/8	162	$40^{+0.100}$	23	$50_{+0.1}^{+0.3}$	$100_{-0.3}^{-0.1}$	45	115	70	48	17	18.5	149	86	135	M18 1.5	20	41	90
200	to 1200	63	60	226	124	40.5	-	-	21	131	187	216	5.5	34	3/8	182	$40^{+0.100}$	25	$50_{+0.1}^{+0.3}$	$100_{-0.3}^{-0.1}$	50	115	74	48	17	18.5	165	97	135	M20 1.5	20	46	90
250	to 1200	71	67	277	152	58	-	-	35	155	237	261.5	6	42	1/2	225	$50^{+0.100}$	30	$63_{+0.1}^{+0.3}$	$126_{-0.3}^{-0.1}$	60	140	86	60	20	23	200	117	160	M24 1.5	25	56	110


Bore size   $(\mathbf{m m})$	$\mathbf{M}$	MA	MB	MM	$\mathbf{N}$	$\mathbf{P}$	$\mathbf{R R}$	$\mathbf{S}$	$\mathbf{T}$	$\mathbf{U}$	$\mathbf{V}$	$\mathbf{W}$	$\mathbf{Z}$	$\mathbf{Z Z}$
$\mathbf{1 2 5}$	19	-	-	M $30 \times 1.5$	35	$1 / 2$	29	98	5	35	30	-	383	412
$\mathbf{1 4 0}$	19	-	-	M $30 \times 1.5$	35	$1 / 2$	32	98	5	40	30	8	393	425
$\mathbf{1 6 0}$	22	-	-	M $36 \times 1.5$	39	$3 / 4$	36	106	5	45	30	9	438	474
$\mathbf{1 8 0}$	26	M12	25	M40 $\times 1.5$	39	$3 / 4$	44	111	-	50	-	-	503	547
$\mathbf{2 0 0}$	26	M16	31	M45 $\times 1.5$	39	$3 / 4$	44	111	-	50	-	-	523	567
$\mathbf{2 5 0}$	30	M20	41	M56 $\times 2$	49	1	55	141	-	65	-	-	648	703


With Rod Boot						(mm)	
Bore size (mm)	Stroke range (mm)	e	f	h	$\ell$	$\mathrm{Z}_{1}$	ZZ ${ }_{1}$
125	30 to 1000	75	40	133	0.2 stroke	406	435
140	30 to 1000	75	40	133	0.2 stroke	416	448
160	30 to 1200	75	40	141	0.2 stroke	459	495
180	30 to 1200	85	45	153	0.2 stroke	521	565
200	30 to 1200	90	45	153	0.2 stroke	541	585
250	30 to 1200	105	55	176	0.17 stroke	664	719

> With Auto Switch
SSMC

## Series CLS

## Dimensions

## Centre trunnion type/(T)



With rod boot
For ø180, ø200, ø250


Bore size (mm)	$\begin{aligned} & \hline \text { Stroke } \\ & \text { range } \\ & (\mathrm{mm}) \end{aligned}$	A	AL	B	BA	BB	BC	BD	BE	BG	BY	BZ	BV	BW	BP	C	D	E	EA	F	FA	GA	GB	GC	H	J	K	KA	M	MM	MA	MB	N	P
125	25 to 1000	50	47	145	75	18	-	-	-		110	136	-	-	1/4	115	36	90	59	43	14	16	107	58	110	M14 1.5	15	31	19	M30 1.5		-	35	1/2
140	30 to 1000	50	47	161	78	18	3	30	-		110	146	-	-	1/4	128	36	90	59	43	14	16	114	64	110	M14 1.5	15	31	19	M30 1.5			35	$1 / 2$
160	35 to 1200	56	53	182	95	23	5	46	-		132	169		-	1/4	144	40	90	59	43	14	18.5	130	74	120	M16 1.5	17	36	22	M $36 \times 1.5$		-	39	3/4
180	30 to 1200	63	60	204	106	36	-	-	16	118	167	195	5	30	3/8	162	45	115	70	48	17	18.5	149	86	135	M18 1.5	20	41	26	M $40 \times 1.5$	M12	25	39	3/4
200	30 to 1200	63	60	226	124	40.5	-	-	21	131	187	216	5.5	34	3/8	182	50	115	74	48	17	18.5	165	97	135	M20 1.5	20	46	26	M45 1.5	M16	31	39	3/4
250	30 to 1200	71	67	277	152	58	-	-	35	155	237	261.5	6	42	1/2	225	60	140	86	60	20	23	200	117	160	M24 1.5	25	56	30	M56 $\times 2$	M20	41	49	1


Bore size   $(\mathbf{m m})$	$\mathbf{R}$	$\mathbf{S}$	$\mathbf{T}$	TDe8	TT	TX	TY	TZ	$\mathbf{V}$	$\mathbf{W}$	$\mathbf{Z}$	$\mathbf{Z Z}$
$\mathbf{1 2 5}$	1	98	5	$32_{-0.089}^{-0.050}$	50	170	164	234	30	-	269	337
$\mathbf{1 4 0}$	1.5	98	5	$36_{-0.089}^{-0.050}$	55	190	184	262	30	8	269	337
$\mathbf{1 6 0}$	1.5	106	5	$40_{-0.089}^{-0.050}$	60	212	204	292	30	9	305	380
$\mathbf{1 8 0}$	2	111	-	$45_{-0.089}^{-0.050}$	59	236	228	326	-	-	357.5	439
$\mathbf{2 0 0}$	2	111	-	$45_{-0.089}^{-0.050}$	59	265	257	355	-	-	377.5	459
$\mathbf{2 5 0}$	3	141	-	$56_{-0.106}^{-0.060}$	69	335	325	447	-	-	467.5	568

With Rod Boot

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { Stroke } \\ & \text { range } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	e	$f$	h	$\ell$	$\mathrm{Z}_{1}$	ZZ
125	30 to 1000	75	40	133	0.2 stroke	292	360
140	30 to 1000	75	40	133	0.2 stroke	292	36
160	30 to 1200	75	40	141	0.2 stroke	326	401
180	30 to 1200	85	45	153	0.2 stroke	375.5	
200	30 to 1200	90	45	153	0.2 stroke	395.5	
50	30 to 1200	1	55				

With Auto Switch

Bore size (mm)	Stroke range (mm)	S	Without rod boot		Withrod boot	
			Z	ZZ	$\mathrm{Z}_{1}$	ZZ
125	to 1000	98	269	337	292	36
40	to 1000	98	269	33	292	
160	200	106	305	380	326	
180	to 1200	115	359.5	443	377.5	461
00						

## Series CLS

## Accessory Dimensions

Y Type Double Knuckle Joint



Material: Cast iron

Model	$\begin{gathered} \hline \text { Applicable } \\ \text { bore size } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	A1	E1	L1	MM	NDH10	NX	NZ	RR1	U1
Y-12	125	8	46	100	M $30 \times 1.5$	$25^{+0.084}$	$32_{+0.1}^{+0.3}$	$64_{-0.3}^{-0.1}$	27	42
Y-14	140	8	48	105	M $30 \times 1.5$	$28_{0}^{+0.084}$	$36_{+0.1}^{+0.3}$	$72_{-0.3}^{-0.1}$	30	47
Y -16	160	8	55	110	M $36 \times 1.5$	$32^{+0.1}$	$40_{+0.1}^{+0.3}$	$80_{-0.3}^{-0.1}$	34	46
Y-18	180	8	70	125	$\mathrm{M} 40 \times 1.5$	$40^{+0.1}$	$50_{+0.1}^{+0.3}$	$100_{-0.3}^{-0.1}$	42.5	54
Y-20	200	8	70	125	M $45 \times 1.5$	$40^{+0.1}$	$50_{+0.1}^{+0.3}$	$100_{-0.3}^{-0.1}$	42.5	54
Y-25	250	9	86	160	M56 $\times 2$	$50^{+0.1}$	$63_{+0.1}^{+0.3}$	$126_{-0.3}^{-0.1}$	53	81

Clevis Pin/Knuckle Pin


Material: Carbon steel

Model	Applicable bore size   $(\mathbf{m m})$	$\mathbf{d}$   $($ drill   through)	$\mathbf{D d 9}$	$\mathbf{L}$	$\boldsymbol{\ell}$	$\mathbf{m}$	Cotter pin
$\mathbf{\| Y - 1 2}$	$\mathbf{1 2 5}$	4	$25_{-0.117}^{-0.065}$	79.5	69.5	5	$\varnothing 4 \times 40 \boldsymbol{\ell}$
$\mathbf{\| Y - 1 4}$	$\mathbf{1 4 0}$	4	$28_{-0.117}^{-0.065}$	86.5	76.5	5	$\varnothing 4 \times 40 \boldsymbol{\ell}$
$\mathbf{\| Y - 1 6}$	$\mathbf{1 6 0}$	4	$32_{-0.142}^{-0.080}$	94.5	84.5	5	$\varnothing 4 \times 40 \boldsymbol{\ell}$
$\mathbf{\| Y - 1 8}$	$\mathbf{1 8 0 , 2 0 0}$	4	$40_{-0.142}^{-0.080}$	115	105	5	$\varnothing 4 \times 55 \boldsymbol{\ell}$
$\mathbf{\| Y - 2 5}$	$\mathbf{2 5 0}$	5	$50_{-0.142}^{-0.080}$	144	132	6	$\varnothing 5 \times 65 \boldsymbol{\ell}$

## I Type Single Knuckle Joint




Rod End Nut


Material: Rolled steel						
Model	Applicable   bore size   $(\mathrm{mm})$	d	$\mathbf{H}$	$\mathbf{B}$	$\mathbf{C}$	D
NT-12	$\mathbf{1 2 5 , 1 4 0}$	$\mathrm{M} 30 \times 1.5$	18	46	53.1	44
NT-16	$\mathbf{1 6 0}$	$\mathrm{M} 36 \times 1.5$	21	55	63.5	53
NT-18	$\mathbf{1 8 0}$	$\mathrm{M} 40 \times 1.5$	23	60	69.3	57
NT-20	$\mathbf{2 0 0}$	$\mathrm{M} 45 \times 1.5$	27	70	80.8	67
NT-25	$\mathbf{2 5 0}$	$\mathrm{M} 56 \times 2$	34	85	98.1	82

## Series CLS

## Accessory Dimensions

## Single/Double Knuckle Joint Mounting



$\xrightarrow[\substack{\text { Bore size } \\(\mathrm{mm})}]{ }$ Symbol	H	A	L1	H1	Applicable knuckle joint part nos.	
					I type single knuckle	Y type double knuckle
125	110	50	100	156.5	I-12	Y-12
140	110	50	105	161.5	I-14	Y-14
160	120	56	110	170.5	I-16	Y-16
180	135	63	125	193.5	I-18	Y-18
200	135	63	125	193.5	I-20	Y-20
250	160	71	160	245.5	I-25	Y-25

A, H dimensions when single/
double knuckle joint and rod end nut are mounted together.

Bore size (mm)	A	H
$\mathbf{1 2 5}$	65	125
$\mathbf{1 4 0}$	65	125
$\mathbf{1 6 0}$	76	140
$\mathbf{1 8 0}$	83	155
$\mathbf{2 0 0}$	88	160
$\mathbf{2 5 0}$	106	195

* Single knuckle joint and double knuckle joint should be used separately.
(Fasten by screwing completely into the rod end threads.)
* When using a single/double knuckle joint together with a rod end nut, the
$\mathbf{A}$ and $\mathbf{H}$ dimensions should be extended.
(For extension of the $\mathbf{A}$ and $\mathbf{H}$ dimensions, refer to the table above and specify the made-to-order product -XAO.)


## Auto Switch Specifications Series CLS

Minimum Stroke for Auto Switch Mounting on Cylinder Unit

Auto switch model	No. of auto switches mounted		Mounting brackets   other than   centre trunnion	Centre trunnion type					
			$\varnothing 125$	$\varnothing 140$	$\varnothing 160$	$\varnothing 180$	$\varnothing 200$		
D-A9 $\square$	2 pcs. (Different sides, Same side), 1 pc.			15	100	105	110		
	"n" pcs.		$\begin{aligned} & 15+35 \frac{(n-2)}{2} \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{aligned} & 100+35 \frac{(n-4)}{2} \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 105+35 \frac{(n-4)}{2} \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{gathered} 110+35 \frac{(n-4)}{2} \\ n=4,8,12,16 \cdots \end{gathered}$			
D-A9■V	2 pcs. (Different sides, Same side), 1 pc.		10	75	80	85			
	"n" pcs.		$\begin{aligned} & 10+25 \frac{(n-2)}{2} \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 75+25 \frac{(n-4)}{2} \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{gathered} 80+25 \frac{(n-4)}{2} \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$	$\begin{gathered} 85+25 \frac{(n-4)}{2} \\ n=4,8,12,16 \cdots \end{gathered}$			
$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { W } \end{aligned}$	2 pcs. (Different sides, Same side), 1 pc.		15	105	110	115			
	"n" pcs.		$\begin{aligned} & 15+35 \frac{(n-2)}{2} \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{aligned} & 105+35 \frac{(n-4)}{2} \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 110+35 \frac{(n-4)}{2} \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{gathered} 115+35 \frac{(n-4)}{2} \\ n=4,8,12,16 \cdots \end{gathered}$			
$\begin{aligned} & \text { D-M9■V } \\ & \text { D-M9■WV } \end{aligned}$	2 pcs. (Different sides, Same side), 1 pc.		10	80	85	90			
	"n" pcs.		$\begin{aligned} & 10+20 \frac{(n-2)}{2} \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{aligned} & 80+20 \frac{(n-4)}{2} \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{gathered} 85+20 \frac{(n-4)}{2} \\ n=4,8,12,16 \cdots \end{gathered}$	$\begin{gathered} 90+20 \frac{(n-4)}{2} \\ n=4,8,12,16 \cdots \end{gathered}$			
D-M9BAL	2 pcs. (Different sides, Same side), 1 pc.		25	120	125	130	135		
	"n" pcs.		$\begin{aligned} & 25+45 \frac{(n-2)}{2} \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{aligned} & 120+45 \frac{(n-4)}{2} \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 125+45 \frac{(n-4)}{2} \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 130+45 \frac{(n-4)}{2} \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 135+45 \frac{(n-4)}{2} \\ & n=4,8,12,16 \cdots \end{aligned}$		
$\begin{aligned} & \text { D-A5 } \square, \text { A6 } \square, \text { A59W } \\ & \text { D-F5 } \square, \text { J5 } \square, \text { F5 } \square \text { W, J59W } \\ & \text { D-F5BAL, F59F } \end{aligned}$	2 pcs. (Different sides, Same side), 1 pc.		25	125	135	135	150	150	
	"n" pcs. (Same side)		$\begin{aligned} & 25+55 \frac{(n-2)}{2} \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{aligned} & 125+55 \frac{(n-4)}{2} \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 135+55 \frac{(n-4)}{2} \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{array}{r} 150+55 \frac{(n-4)}{2} \\ n=4,8,12,16 \cdots \end{array}$		
D-F5NTL	2 pcs. (Different sides, Same side), 1 pc.		35	145	155		170		
	"n" pcs. (Same side)		$\begin{aligned} & 35+55 \frac{(n-2)}{2} \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{aligned} & 145+55 \frac{(n-4)}{2} \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 155+55 \frac{(n-4)}{2} \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{aligned} & 170+55 \frac{(n-4)}{2} \\ & n=4,8,12,16 \cdots \end{aligned}$		
$\begin{aligned} & \text { D-A3 } \\ & \text { D-G39 } \\ & \text { D-K39 } \end{aligned}$	2 pcs.	Different sides	35	110				150	
		Same side	100	110				150	
	"n" pcs.	Different sides	$35+30(\mathrm{n}-2)$	$110+30(\mathrm{n}-2) \quad \mathrm{n}=2,4,6,8 \cdots$				$\begin{aligned} & 150+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	
		Same side	$100+100(n-2)$	$110+100(n-2) \quad n=2,4,6,8 \cdots$				$\begin{aligned} & 150+100(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	
		1 pc .	15	110				150	
D-A44	2 pcs.	Different sides	35	110				150	
		Same side	55	110				150	
	"n" pcs.	Different sides	$35+30(n-2)$	$110+30(n-2) \quad n=2,4,6,8 \cdots$				$\begin{aligned} & 150+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	
		Same side	$55+55(\mathrm{n}-2)$	$110+50(n-2) \quad n=2,4,6,8 \cdots$				$\begin{aligned} & 150+50(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	
		pc.	15	110				150	
D-Z7口, Z80	2 pcs. (Differ	es, Same side), 1 pc.	15	105		110	115		
$\begin{aligned} & \text { D-Y59 } \square, \text { Y7P } \\ & \text { D-Y7 } \square \text { W } \end{aligned}$	"n" pcs.		$\begin{gathered} 15+40 \frac{(n-2)}{2} \\ n=2,4,6,8 \cdots \end{gathered}$	$\begin{aligned} & 105+40 \frac{(n-4)}{2} \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{aligned} & 110+40 \frac{(n-4)}{2} \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 115+40 \frac{(n-4)}{2} \\ & n=4,8,12,16 \ldots \end{aligned}$		
$\begin{aligned} & \text { D-Y69■, Y7PV } \\ & \text { D-Y7 } \square \text { WV } \end{aligned}$	2 pcs. (Different sides, Same side), 1 pc.		10	90		95	100		
	"n" pcs.		$\begin{gathered} 10+30 \frac{(n-2)}{2} \\ n=2,4,6,8 \cdots \end{gathered}$	$\begin{gathered} 90+30 \frac{(n-4)}{2} \\ n=4,8,12,16 \cdots \end{gathered}$		$\begin{gathered} 95+30 \frac{(n-4)}{2} \\ n=4,8,12,16 \ldots \end{gathered}$	$\begin{aligned} & 100+30 \frac{(n-4)}{2} \\ & n=4,8,12,16 \cdots \end{aligned}$		
D-Y7BAL	2 pcs. (Different sides, Same side), 1 pc.		20	115		120	125		
	"n" pcs.		$\begin{gathered} 20+45 \frac{(n-2)}{2} \\ n=2,4,6,8 \cdots \end{gathered}$	$\begin{aligned} & 115+45 \frac{(n-4)}{2} \\ & n=4,8,12,16 \ldots \end{aligned}$		$\begin{aligned} & 120+45 \frac{(n-4)}{2} \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 125+45 \frac{(n-4)}{2} \\ & n=4,8, \frac{12,16}{} \end{aligned}$		



[^1]* Normally closed ( $\mathrm{NC}=\mathrm{b}$ contact), solid state switch (D-F9G/F9H/Y7G/Y7H type) are also available. For details, refer to "SMC Best Pneumatics" catalogue.

SNC

## Series CLS

Cylinder Unit Auto Switches/Proper Mounting Position and Height for Stroke End Detection
<Tie-rod mounting type>

D-Y7 $\square / Z 80 / A 9 \square / A 9 \square V$
D-Y59■/Y69■/Y7P/Y7PV/M9 $\square /$ M9 $\square V$
D-Y7 $\square W / Y 7 \square W V / M 9 \square W / M 9 \square W V$
D-Y7BAL/M9BAL


D-A5/A6


D-F5 $\square / J 5 \square / D-F 5 N T L$
D-F5 $\square$ W/J59W
D-F5BAL/F59F


## <Band mounting type>



## D-A44



Proper Auto Switch Mounting Positions

	$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square V \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \square \mathbf{W V} \end{aligned}$		$\begin{aligned} & \text { D-A9■ } \\ & \text { D-A9■V } \end{aligned}$		D-M9BAL		$\begin{aligned} & \hline \text { D-Z7口 } \\ & \text { D-Z80 } \\ & \text { D-Y5 } \\ & \text { D-Y6 } \\ & \text { D-Y7P } \\ & \text { D-Y7PV } \\ & \text { D-Y7ロW } \\ & \text { D-Y7 } \\ & \text { D-Y7BAL } \end{aligned}$		$\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \\ & \text { D-A3 } \square \\ & \text { D-A44 } \\ & \text { D-G39 } \\ & \text { D-K39 } \end{aligned}$		D-A59W		D-F5 $\square$ W   D-J59W   D-F5BAL   D-F5 $\square$   D-J5 $\square$   D-F59F		D-F5NTL	
	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B
125	8	8	4	4	7	7	1.5	1.5	0	0	2	2	4.5	4.5	9.5	9.5
140	8	8	4	4	7	7	1.5	1.5	0	0	2	2	4.5	4.5	9.5	9.5
160	8	8	4	4	7	7	1.5	1.5	0	0	2	2	4.5	4.5	9.5	9.5
180	13.5	11.5	9.5	7.5	12.5	10.5	7	5	3.5	1.5	7.5	5.5	10	8	15	13
200	16	14	12	10	15	13	9.5	7.5	6	4	10	8	12.5	10.5	17.5	15.5

* Figures in the table above are used as a reference when mounting the auto switches for stroke end detection. In the case of actually setting the auto switches, adjust them after confirming their operation.

Auto Switch Mounting Height
mm)

	$\begin{aligned} & \text { D-A9■(V) } \\ & \text { D-M9 } \\ & \text { D-M9 } \square \text { W } \\ & \text { D-M9BAL } \end{aligned}$		$\begin{aligned} & \text { D-M9■V } \\ & \text { D-M9■WV } \end{aligned}$		$\begin{aligned} & \text { D-Z7 } \square \\ & \text { D-Z80 } \\ & \text { D-Y5 } \square \\ & \text { D-Y6 } \square \\ & \text { D-Y7P } \\ & \text { D-Y7PV } \\ & \text { D-Y7 } \quad W \\ & \text { D-Y7 } \square W V \\ & \hline \end{aligned}$		D-Y7BAL		$\begin{gathered} \text { D-A3 } \square \\ \text { D-G39 } \\ \text { D-K39 } \\ \hline \text { Hs } \end{gathered}$	D-A44   Ht	$\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \square \\ & \text { D-A59W } \end{aligned}$		$\begin{aligned} & \text { D-F5 } \square \\ & \text { D-J5 } \\ & \text { D-F5 } \square W \\ & \text { D-J59W } \\ & \text { D-F5BAL } \\ & \text { D-F59F } \\ & \text { D-F5NTL } \end{aligned}$	
	Hs	Ht	Hs	Ht	Hs	Ht	Hs	Ht			Hs	Ht	Hs	Ht
125	69	69.5	71.5	69.5	69	69.5	71	69.5	116	126	75.5	69.5	74.5	70
140	76	76	77.5	76	76	76	77	76	124	134	81	76.5	80	76.5
160	85	85	86	85	85	85	88.5	85	134.5	144.5	89	87.5	88	87.5
180	95	95	95.5	95	95	95	97.5	95	144	154	97.0	97.5	96	97.5
200	106	106	106	106	106	106	108	106	154	164	107.0	108.0	107.5	108.0

# Auto Switch Specifications Series <br> CLS 

Operating Range

	(mm)				
Auto switch model	Bore size				
	125	140	160	180	200
D-M9 $\square$, D-M9 $\square$ V	4	4.5	4.5	4.5	4.5
D-M9 $\square$ W, D-M9 $\square$ WV	7	7	7	7	7
D-M9BAL	7	7.5	8	8	8
D-A9■, D-A9 $\square$ V	12	12.5	11.5	12	12.5
D-Z7口, Z80	14	14.5	13	14	14.5
D-A3 $\square$, A44, D-A5 $\square$, A6 $\square$	10	10	10	10	10
D-A59W	17	17	17	17	17
D-Y59 $\square, \mathrm{Y} 69 \square, \mathrm{D}-\mathrm{Y} 7 \mathrm{P}, \mathrm{Y} 7 \mathrm{PV}$, D-Y7 $\square \mathrm{W}, \mathrm{Y} 7 \square W \mathrm{~V}$	12	13	7	7.5	8
D-Y7BAL	6	6	7	7	7
D-F5 $\square$, J5 $\square$, F59F, D-F5 $\square$ W, J59W, D-F5BAL, F5NTL	5	5	5.5	6	6
D-G39, K39	11	11	10	10	10

* Since this is a guideline including hysteresis, not meant to be guaranteed (assuming approximately $\pm 30 \%$ dispersion).

There may be the case to change substantially depending on an ambient environment.

## Proper Mounting Positions for Lock Unit Auto Switches

The operating status (at the unlocked end) of the lock unit (brake piston) can be detected by a signal from the auto switch, which is mounted on the brake cylinder of the CLS series.


Auto switch model	D-A90   D-A93		D-M9N   D-M9P   D-M9B	
	a	b	a	b
	62	42	58	46
$\mathbf{1 4 0}$	70.5	50.5	66.5	54.5
$\mathbf{1 6 0}$	70.5	50.5	66.5	54.5
$\mathbf{1 8 0}$	80.5	60.5	76.5	64.5
$\mathbf{2 0 0}$	86	66	82	70
$\mathbf{2 5 0}$	102	82	98	86

*Be sure to confirm operation after mounting.

## $\triangle$ Caution

A single auto switch is available only on the lock unit.

## Mounting of Lock Unit Auto Switches

When mounting an auto switch, insert it into the cylinder's switch groove from the direction shown in the drawing below. After placing it in the mounting position, use a flathead watchmakers' screwdriver to tighten the mounting screw which is included.


When tightening the auto switch mounting screw, use a watchmakers' screwdriver with a handle 5 to 6 mm in diameter. The tightening torque should be 0.10 to $0.20 \mathrm{~N} \cdot \mathrm{~m}$. As a rule it can be turned about $90^{\circ}$ past the point at which tightening can be felt.

## Auto Switch Common Specifications

Type	Reed switch	Solid state switch
Leakage current	None	3-wire: $100 \mu \mathrm{~A}$ or less 2 -wire: 0.8 mA or less
Operating time	1.2 ms	1 ms or less
Impact resistance	$300 \mathrm{~m} / \mathrm{s}^{2}$	$1000 \mathrm{~m} / \mathrm{s}^{2}$
Insulation resistance	$50 \mathrm{M} \Omega$ or more at 500 VDC Mega (between lead wire and case)	
Withstand voltage	1000 VAC for 1 minute (between lead wire and case)	
Ambient temperature	-10 to $60^{\circ} \mathrm{C}$	
Enclosure	IEC529 standard IP67, JIS C 0920 waterproof construction	

## Lead Wire Length

## Lead wire length indication

(Example)

dead wire length

$\mathbf{N i l}$	0.5 m	
$\mathbf{L}$	3 m	
$\mathbf{Z}$	5 m	

Note 1) Applicable auto switch with 5 m lead wire " Z "
Reed switch: None
Solid state switch: Manufactured upon receipt of order as standard.
Note 2) To designate solid state switches with flexible specifications, add "-61" after the lead wire length.

* Oilproof flexible heavy-duty cable is used for D-M9 $\square$ as standard. There is no need to add the suffix -61 to the end of part number.
(Example) D-M9PWVL-61
Flexible specification


## Auto Switch Hysteresis

The hysteresis is the difference between the position of the auto switch as it turns "on" and as it turns "off". A part of operating range (one side) includes this hysteresis.


Note) Hysteresis may fluctuate due to the operating environment. Contact SMC if hysteresis causes an operational problem.

Contact Protection Boxes: CD-P11, CD-P12

## <Applicable switch model> <br> D-A9/A9■V

The auto switches above do not have a built-in contact protection circuit. Therefore, please use a contact protection box with the switch for any of the following cases:
(1) Where the operation load is an inductive load.
(2) Where the wiring length to load is greater than 5 m .
(3) Where the load voltage is 100 VAC.

The contact life may be shortened. (Due to permanent energising conditions.)

## Specifications

Part no.	CD-P11		CD-P12
Load voltage	100 VAC	200 VAC	24 VDC
Maximum load current	25 mA	12.5 mA	50 mA

* Lead wire length - Switch conneciton side 0.5 m

$$
\text { Load connection side } 0.5 \mathrm{~m}
$$



Internal Circuit

CD-P11	
CD-P12	

Dimensions


## Connection

To connect a switch unit to a contact protection box, connect the lead wire from the side of the contact protection box marked SWITCH to the lead wire coming out of the switch unit. Keep the switch as close as possible to the contact protection box, with a lead wire length of no more than 1 metre.

## Basic Wiring


(Power supplies for switch and load are separate.)


## Example of Connection to PLC (Programmable Logic Controller)

- Sink input specifications

3-wire, NPN


- Source input specifications 3-wire, PNP


2-wire


Connect according to the applicable PLC input specifications, since the connection method will vary depending on the PLC input specifications.

## Example of AND (Serial) and OR (Parallel) Connection

- 3-wire

AND connection for NPN output
(using relays)


## 2-wire with 2-switch AND connection



When two switches are connected in series, a load may malfunction because the oad voltage will decrease when in the ON state. The indicator lights will illuminate if both of the switches are in the ON state.

Load voltage at $\mathrm{ON}=\underset{\text { Power supply }}{\text { voltage }} \begin{gathered}\text { Internal } \\ \text { voltage drop }\end{gathered} \times 2$ pcs.

$$
=24 \mathrm{~V}-4 \mathrm{~V} \times 2 \mathrm{pcs} .
$$

$$
\begin{aligned}
& =4 \mathrm{~V} \\
& =16 \mathrm{~V}
\end{aligned}
$$

Example: Power supply is 24 VDC
Internal voltage drop in switch is 4 V .

AND connection for NPN output (performed with switches only)

OR connection for NPN output


The indicator lights will illuminate
when both switches are turned ON.

## 2-wire with 2-switch OR connection



Load voltage at OFF = Leakage current $\times 2$ pcs.
$x$ Load impedance
$=1 \mathrm{~mA} \times 2 \mathrm{pcs} . \times 3 \mathrm{k} \Omega$
$=6 \mathrm{~V}$
Example: Load impedance is $3 \mathrm{k} \Omega$.
Leakage current from switch is 1 mA .

[^2]
# Reed Switch: Direct Mounting Style <br> D-A90(V)/D-A93(V)/D-A96(V) ( $\epsilon$ 

Grommet
Electrical entry direction: In-line


## © Caution

Operating Precautions
Fix the switch with the existing screw installed on the switch body. The switch may be damaged if a screw other than the one supplied, is used.

## Auto Switch Internal Circuit

D-A90(V)   D-A96(V)

Note) (1) In a case where the operation load is an inductive load.
2) In a case where the wiring load is greater than 5 m .
(3) In a case where the load voltage is 100 VAC.
Use the auto switch with a contact protection box in any of the above mentioned cases (For details about the contact protection box, refer to page 17.)

Auto Switch Specifications

For details about certified products conforming to international standards, visit us at www.smcworld.com.

PLC: Programmable Logic Controller			
D-A90/D-A90V (Without indicator light)			
Auto switch part no.	D-A90/D-A90V		
Applicable load	IC circuit, Relay, PLC		
Load voltage	$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{or} \mathrm{less}$	48 V AC/DC or less	$100 \mathrm{~V} \mathrm{AC/DC} \mathrm{or} \mathrm{less}$
Maximum load current	50 mA	40 mA	20 mA
Contact protection circuit	None		
Internal resistance	$1 \Omega$ or less (including lead wire length of 3 m )		
D-A93/D-A93V/D-A96/D-A96V (With indicator light)			
Auto switch part no.	D-A93/D-A93V		D-A96/D-A96V
Applicable load	Relay, PLC		IC circuit
Load voltage	24 VDC	100 VAC	4 to 8 VDC
Note 3)   Load current range   and max. load current	5 to 40 mA	5 to 20 mA	20 mA
Contact protection circuit	None		
Internal voltage drop	D-A93 - 2.4 V or less (to 20 mA ) $/ 3 \mathrm{~V}$ or less (to 40 mA ) D-A93V - 2.7 V or less		0.8 V or less
Indicator light	Red LED illuminates when ON.		
Lead wires   D-A90(V)/D-A93(V) - Oilproof heavy-duty vinyl cable: ø2.7, $0.18 \mathrm{~mm}^{2} \times 2$ cores (Brown, Blue), 0.5 m D-A96(V) - Oilproof heavy-duty vinyl cable: ø2.7, $0.15 \mathrm{~mm}^{2} \times 3$ cores (Brown, Black, Blue), 0.5 m   Note 1) Refer to page 17 for reed switch common specifications.   Note 2) Refer to page 17 for lead wire lengths.   Note 3) In less than 5 mA condition, the indicating light visibility becomes low, and it may be unreadable in less than 2.5 mA codition. However, as long as the contact ouput is over a 1 mA condition, there will be no problem.			

Weight

Auto switch part no.	D-A90	D-A90V	D-A93	D-A93V	D-A96	D-A96V
Lead wire length: 0.5 m	6	6	6	6	8	8
Lead wire length: 3 m	30	30	30	30	41	41

Dimensions
(mm)

D-A90/D-A93/D-A96


D-A90V/D-A93V/D-A96V



# Solid State Switch: Direct Mounting Style D-M9N(V)/D-M9P(V)/D-M9B(V) C E 

## Grommet

- 2-wire load current is reduced ( 2.5 to 40 mA )


## - Lead free

- UL certified (style 2844) lead cable is used.



## ©Caution

Operating Precautions
Fix the switch with the existing screw installed on the switch body. The switch may be damaged if a screw other than the one supplied, is used.

Auto Switch Internal Circuit


Auto Switch Specifications

1
For details about certified products conforming to international standards, visit us at www.smoworld.com.

PLC: Programmable Logic Controller						
D-M9 $\square$ /D-M9 $\square$ V (With indicator light)						
Auto switch part no.	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC ( 4.5 to 28 V )				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when ON.					

- Lead wires

Oilproof heavy-duty vinyl cable: ø2.7 $\times 3.2$ ellipse
D-M9B(V) $\quad 0.15 \mathrm{~mm}^{2} \times 2$ cores
D-M9N(V), D-M9P(V) $\quad 0.15 \mathrm{~mm}^{2} \times 3$ cores
Note 1) Refer to page 17 for solid state switch common specifications.
Note 2) Refer to page 17 for lead wire lengths.
Weight
(g)

Auto switch part no.		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length   $(\mathrm{m})$	0.5	8	8	7
	3	41	41	38
	5	68	68	63

Dimensions
(mm)


# 2-colour Indication Solid State Switch: Direct Mounting Style <br> D-F9NW(V)/D-F9PW(V)/D-F9BW(V) C E 

## ©Caution

Operating Precautions
Fix the switch with the existing screw installed on the switch body. The switch may be damaged if a screw other than the one supplied, is used.


D-F9PW(V)


D-F9BW(V)


Indicator light/Display method


Auto Switch Specifications

PLC: Programmable Logic Controller						
D-F9 $\square$ W/D-F9 $\square$ WV (With indicator light)						
Auto switch part no.	D-F9NW	D-F9NWV	D-F9PW	D-F9PWV	D-F9BW	D-F9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay IC, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC ( 4.5 to 28 VDC )				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC )	
Load current	40 mA or less		80 mA or less		5 to 40 mA	
Internal voltage drop	1.5 V or less$(0.8 \mathrm{~V}$ or less at 10 mAload current)		0.8 V or less		4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating position .......... Red LED illuminates.   Optimum operating position .......... Green LED illuminates.					

- Lead wires

Oilproof heavy-duty vinyl cable: ø2.7, $0.15 \mathrm{~mm}^{2} \times 3$ cores (Brown, Black, Blue), $0.18 \mathrm{~mm}^{2} \times 2$ cores (Brown, Blue), 0.5 m
Note 1) Refer to page 17 for solid state switch common specifications.
Note 2) Refer to page 17 for lead wire lengths.
Weight
(g)

Auto switch part no.		D-F9NW(V)	D-F9PW(V)	D-F9BW(V)
Lead wire length   $(\mathrm{m})$	0.5	7	7	7
	3	34	34	32
	5	56	56	52

Dimensions
D-F9■W


D-F9 $\square W V$


## Change of rod end style

## -XA0 to XA30

Non-standard rod end styles are categorised.

1) SMC will make appropriate arrangements if no dimension, tolerance, or finish instructions are given in the diagram.
2) Standard dimensions marked with "*" will be as follows to the rod diameter (D). Enter any special dimension you desire. $D>25 \rightarrow D-4 \mathrm{~mm}$
Symbol: AO

## Change of trunnion bracket mounting position

## 2 -XC14

The position for mounting the trunnion pivot bracket on the cylinder can be moved from the standard mounting position to any desired position.

## CLS Standard part no. -XC14 A <br> Change of trunnion bracket mounting position <br> - Trunnion mounting position

Nil	Mounting positions other than   the A or B positions shown below
A	Front trunnion
B	Rear trunnion

## Specifications

Action	Double acting: Single rod
Mounting bracket	T bracket only

Specifications other than above are the same as standard type.

## Precautions

1) Specify " $Z+1 / 2$ stroke" in the case the trunnion bracket position is not $-\mathrm{XC} 14 \mathrm{~A}, \mathrm{~B}$ or trunnion is not a centre trunnion.
2) SMC will make appropriate arrangements if no dimension, tolerance, or finish instructions are given in the diagram.
3) The possible range of trunnion bracket mounting position is indicated in the table below.
4) Some trunnion mounting positions do not allow auto switch mounting. Please consult with SMC for more information.


Series CLS
(mm)

	Z+1/2 stroke					
	Without rod boot					
	-XC14A	-XC14B	-XC14		Reference Standard (Centre trunnion)	Minimum stroke
			Minimum	Maximum		
125	280	258 + Stroke	280.5	257.5 + Stroke	$269+0.5$ Stroke	25
140	282.5	255.5 + Stroke	283	255 + Stroke	$269+0.5$ Stroke	30
160	321	289 + Stroke	321.5	288.5 + Stroke	$305+0.5$ Stroke	35

(mm)

	Z+1/2 stroke					
	With rod boot					
	-XC14A	-XC14B	-XC14		Reference	
			Minimum	Maximum	Standard (Centre trunnion)	
125	$303+0.2$ Stroke	$281+1.2$ Stroke	$303.5+$ 0.2 Stroke	$280.5+1.2$ Stroke	$292+0.7$ Stroke	25
140	$305.5+0.2$ Stroke	$278.5+1.2$ Stroke	$306+0.2$ Stroke	$278+1.2$ Stroke	$292+0.7$ Stroke	30
160	$345+0.2$ Stroke	$310+1.2$ Stroke	$345.5+0.2$ Stroke	$309.5+1.2$ Stroke	$326+0.7$ Stroke	35

## Series CLS

## Made to Order

Please contact SMC for detailed dimensions, specifications, and lead times.

## Special port location <br> 1-XC3 <br> Compared with the standard type, a cylinder which changes the connection port location of rod/head cover and the location of cushion valve. <br> CLS Standard part no. -XC3 A C A <br> Special port location <br> Rod port location viewed <br> from the head end <br> Cushion valve location viewed from the rod end <br> Lock position viewed from the rod end <br> (Brake cylinder position)

Relation between port location and cushion valve location


1) As shown in the above diagram, the symbols for the positions of the ports and cushion valves are as follows: viewed from the rod side, the top position is rendered A : then, $\mathrm{B}, \mathrm{C}$, and D , in the clockwise direction.
2) The type in which the ports and the cushion valves are combined is applicable only when the rod cover and the head cover are changed to the same position.
3) The symbol indicates as "-XC3(A)B(A)" is the standard specification, and there are no part numbers A or B .
4) Lock positions B, D are not applicable for the rod end flange style because the brake cylinder and mounting hole for the flange bracket interfere with each other.
5) Those shown above are the same as standard, other than the symbols that indicate the positions of the ports and the cushion valves.

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by labels of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO 4414 Note 1), JIS B 8370 Note 2) and other safety practices.

## Explanation of the Labels

Labels	Explanation of the labels
A Danger	In extreme conditions, there is a possible result of serious injury or loss of life.
\. Warning	Operator error could result in serious injury or loss of life.
¢ Caution	Operator error could result in injury or equipment damage.

Note 1) ISO 4414: Pneumatic fluid power - General rules relating to systems
Note 2) JIS B 8370: General Rules for Pneumatic Equipment
Note 3) Injury indicates light wounds, burns and electrical shocks that do not require hospitalisation or hospital visits for long-term medical treatment.
Note 4) Equipment damage refers to extensive damage to the equipment and surrounding devices.

## Selection/Handling/Applications

1. The compatibility of the pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications.
Since the products specified here are used in various operating conditions, their compatibility for the specific pneumatic system must be based on specifications or post analysis and/or tests to meet the specific requirements. The expected performance and safety assurance are the responsibility of the person who has determined the compatibility of the system. This person should continuously review the suitability of all items specified, referring to the latest catalogue information with a view to giving due consideration to any possibility of equipment failure when configuring a system.
2. Only trained personnel should operate pneumatically operated machinery and equipment.

Compressed air can be dangerous if handled incorrectly. Assembly, handling or repair of pneumatic systems should be performed by trained and experienced operators.
3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.

1. Inspection and maintenance of machinery/equipment should only be performed once measures to prevent falling or runaway of the driven objects have been confirmed.
2. When equipment is removed, confirm that safety process as mentioned above. Turn off the supply pressure for this equipment and exhaust all residual compressed air in the system.
3. Before machinery/equipment is restarted, take measures to prevent quick extension of a cylinder piston rod, etc.
4. Contact SMC if the product will be used in any of the following conditions:
5. Conditions and environments beyond the given specifications, or if product is used outdoors.
6. Installation on equipment in conjunction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverages, recreation equipment, emergency stop circuits, clutch and brake circuits in press applications, or safety equipment.
7. An application which has the possibility of having negative effects on people, property, or animals, requiring special safety analysis.
8. If the products are used in an interlock circuit, prepare a double interlock style circuit with a mechanical protection function for the prevention of a breakdown. And, examine the devices periodically if they function normally or not.

## Exemption from Liability

1. SMC, its officers and employees shall be exempted from liability for any loss or damage arising out of earthquakes or fire, action by a third person, accidents, customer error with or without intention, product misuse, and any other damages caused by abnormal operating conditions.
2. SMC, its officers and employees shall be exempted from liability for any direct or indirect loss or damage, including consequential loss or damage, loss of profits, or loss of chance, claims, demands, proceedings, costs, expenses, awards, judgments and any other liability whatsoever including legal costs and expenses, which may be suffered or incurred, whether in tort (including negligence), contract, breach of statutory duty, equity or otherwise.
3. SMC is exempted from liability for any damages caused by operations not contained in the catalogues and/or instruction manuals, and operations outside of the specification range.
4. SMC is exempted from liability for any loss or damage whatsoever caused by malfunctions of its products when combined with other devices or software.

Series CLS
Auto Switch Precautions 1
Be sure to read this before handling.

Design \& Selection

## $\triangle$ Warning

## 1. Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside the range of specifications of current load, voltage, temperature or impact. We do not guarantee any damage in any case the product is used outside of the specification range.
2. Pay attention to the length of time that a switch is ON at an intermediate stroke position.
When an auto switch is placed at an intermediate position of the stroke and a load is driven at the time the piston passes, the auto switch will operate, but if the speed is too great the operating time will be shortened and the load may not operate properly. The maximum detectable piston speed is:

$$
\mathrm{V}(\mathrm{~mm} / \mathrm{s})=\frac{\text { Auto switch operating range }(\mathrm{mm})}{\text { Time load applied }(\mathrm{ms})} \times 1000
$$

In cases of high piston speed, the use of an auto switch (DF5NT) with a built-in OFF delay timer (approx. 200 ms ) makes it possible to extend the load operating time.
3. Keep wiring as short as possible.

## <Reed switch>

As the length of the wiring to a load gets longer, the rush current at switching ON becomes greater, and this may shorten the product's life. (The switch will stay ON all the time.)

1) For an auto switch without a contact protection circuit, use a contact protection box when the wire length is 5 m or longer.
2) Even if an auto switch has a built-in contact protection circuit, when the wiring is more than 30 m long, it is not able to adequately absorb the rush current and its life may be reduced. It is again necessary to connect a contact protection box in order to extend its life. Please contact SMC in this case.

## <Solid state switch>

3) Although wire length should not affect switch function, use a wire 100 m or shorter.
4. Do not use a load that generates surge voltage. If a surge voltage is generated, the discharge occurs at the contact, possibly resulting in the shortening of product life.

## <Reed switch>

If driving a load such as a relay that generates a surge voltage, use a switch with a built-in contact protection circuit or use a contact protection box.

## <Solid state switch>

Although a zener diode for surge protection is connected ta the output side of a solid state auto switch, damage may still occur if the surge is applied repeatedly. When a load, such as a relay or solenoid, which generates surge is directly driven, use a type of switch with a built-in surge absorbing element.

## 5. Cautions for use in an interlock circuit

When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to avoid trouble by providing a mechanical protection function, or by also using another switch (sensor) together with the auto switch. Also perform periodic maintenance and confirm proper operation.
6. Do not make any modifications to the product.

Do not take the product apart. It may cause human injuries and accidents.

## $\triangle$ Caution

1. Use caution when multiple cylinders are used and close to each other.
When two or more auto switch cylinders are lined up in close proximity to each other, magnetic field interference may cause the switches to malfunction. Maintain a minimum cylinder separation of 40 mm . (When the allowable interval is specified for each cylinder series, use the indicated value.)
2. Take note of the internal voltage drop of the switch.

## <Reed switch>

1) Switches with an indicator light (Except D-A56, A96, A96V, Z76)

- If auto switches are connected in series as shown below, take note that there will be a large voltage drop because of internal resistance in the light emitting diodes. (Refer to internal voltage drop in the auto switch specifications.)
[The voltage drop will be "n" times larger when " $n$ " auto switches are connected.]
Even though an auto switch operates normally, the load may not operate.

- In the same way, when operating under a specified voltage, although an auto switch may operate normally, the load may not operate. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.

$$
\begin{gathered}
\text { Supply } \\
\text { voltage }
\end{gathered}-\begin{gathered}
\text { Internal voltage } \\
\text { drop of switch }
\end{gathered}>\begin{gathered}
\text { Minimum operating } \\
\text { voltage of load }
\end{gathered}
$$

2) If the internal resistance of a light emitting diode causes a problem, select a switch without an indicator light (Model DA6 $\square$, A90, A90V, Z80).

## <Solid state switch>

3) Generally, the internal voltage drop will be greater with a 2wire solid state auto switch than with a reed switch. Take the same precautions as in 1).
Also, note that a 12 VDC relay is not applicable.

## 3. Pay attention to leakage current.

<Solid state switch>
With a 2-wire solid state auto switch, current (leakage current) flows to the load to operate the internal circuit even when in the OFF state.

> Operating current of
> load (OFF condition) $>$ Leakage current

If the criteria given in the above formula are not met, it will not reset correctly (stays ON). Use a 3-wire switch if this specification will not be satisfied.
Moreover, leakage current flow to the load will be " $n$ " times larger when "n" auto switches are connected in parallel.
4. Ensure sufficient clearance for maintenance activities.
When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

Series CLS
Auto Switch Precautions 2
Be sure to read this before handling.

## Mounting \& Adjustment

## © Warning

1. Instruction manua

Install the products and operate them only after reading the instruction manual carefully and understanding its contents. Also keep the manual where it can be referred to as necessary.
2. Do not drop or bump

Do not drop, bump or apply excessive impacts ( $300 \mathrm{~ms}^{2}$ or more for reed switches and $1000 \mathrm{~m} \mathrm{~s}^{2}$ or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.
3. Mount switches using the proper fastening torque.

When a switch is tightened beyond the range of fastening torque, the mounting screws, mounting bracket or switch may be damaged. On the other hand, tightening below the range of fastening torque may allow the switch to slip out of position. (Refer to switch mounting for each series regarding switch mounting, moving, and fastening torque, etc.)
4. Mount a switch at the centre of the operating range.

Adjust the mounting position of an auto switch so that the piston stops at the centre of the operating range (the range in which a switch is ON).
(The mounting position shown in a catalogue indicates the optimum position at stroke end.) If mounted at the end of the operating range (around the borderline of ON and OFF), operation will be unstable.
<D-M9 $\square(V)>$
When the D-M9 auto switch is used to replace old series auto switch, it may not activate depending on operating condition because of its shorter operating range.
Such as

- Application where the stop position of actuator may vary and exceed the operating range of the auto switch, for example, pushing, pressing, clamping operation, etc.
- Application where the auto switch is used for detecting an intermediate stop position of the actuator. (In this case the detecting time will be reduced.)
In these applications, set the auto switch to the centre of the required detecting range


## 5. Securing the space for maintenance

When installing the products, please allow access for maintenance.

## Mounting \& Adjustment

## $\triangle$ Caution

1. Do not carry a cylinder (actuator) by the auto switch lead wires.
Never carry a cylinder (actuator) by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.
2. Fix the switch with appropriate screw installed on the switch body. If using other screws, switch may be damaged.

## Wiring

## $\triangle$ Warning

1. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.
2. Do not wire with power lines or high voltage lines.

Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits, including auto switches, may malfunction due to noise from these other lines.

## $\triangle$ Caution

1. Avoid repeatedly bending or stretching lead wires.

Broken lead wires will result from applying bending stress or stretching force to the lead wires.
2. Be sure to connect the load before power is applied. <2-wire type>
If the power is turned ON when an auto switch is not connected to a load, the switch will be instantly damaged because of excess current.

## 3. Do not allow short circuit of loads.

## <Reed switch>

If the power is turned ON with a load in a short circuited condition, the switch will be instantly damaged because of excess current flow into the switch.

## <Solid state switch>

Model D-M9 $\square(\mathrm{V})$, M9 $\square \mathrm{W}(\mathrm{V})$, J51 and all models of PNP output type switches do not have built-in short circuit prevention circuits. If loads are short circuited, the switches will be instantly damaged, as in the case of reed switches
Take special care to avoid reverse wiring with the power supply line (brown) and the output line (black) on 3-wire type switches.

Series CLS
Auto Switch Precautions 3
Be sure to read this before handling.

## Wiring

## $\triangle$ Caution

## 4. Avoid incorrect wiring.

## <Reed switch>

A 24 VDC switch with indicator light has polarity. The brown lead wire or terminal No. 1 is (+) and the blue lead wire or terminal No. 2 is ( - ).

1) If connections are reversed, a switch will operate, however, the light emitting diode will not light up.
Also note that a current greater than that specified will damage a light emitting diode and it will no longer operate.
Applicable models:
D-Z73, D-A93, A93V, D-A33, A34, A44, D-A53, A54
2) Note however, that in the case of 2-colour indicator type auto switches (D-A59W), if the wiring is reversed, the switch will be in a normally ON condition.
<Solid state switch>
3) If connections are reversed on a 2-wire type switch, the switch will not be damaged if protected by a protection circuit, but the switch will always stay in an ON state. However, it is still necessary to avoid reversed connections, since the switch could be damaged by a load short circuit in this condition.
4) If connections are reversed (power supply line + and power supply line -) on a 3-wire type switch, the switch will be protected by a protection circuit. However, if the power supply line (+) is connected to the blue wire and the power supply line ( - ) is connected to the black wire, the switch will be damaged.
<D-M9 $\square$ (V)>
D-M9 $\square$ (V) does not have built-in short circuit protection circuit. Be aware that if the power supply connection is reversed (e.g. (+) power supply wire and (-) power supply wire connection is reversed), the switch will be damaged.
5. When the cable sheath is stripped, confirm the stripping direction. The insulator may be split or damaged depending on the direction. (D-M9 $\square(\mathrm{V})$ only)


Recommended Tool

Model name	Model no.
Wire stripper	D-M9N-SWY

[^3]Operating Environment

## Warning

1. Never use in an atmosphere of explosive gases.

The construction of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.
2. Do not use in an area where a magnetic field is generated.
Auto switches will malfunction or magnets inside cylinders will become demagnetised. (Consult with SMC regarding the availability of a magnetic field resistant auto switch.)
3. Do not use in an environment where the auto switch will be continually exposed to water.
Although switches, except for some models (D-A3 $\square$, A44, G39, K39), satisfy IEC standard IP67 construction (JIS C 0920: watertight construction), do not use switches in applications where continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction.
4. Do not use in an environment with oil or chemicals.

Consult with SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.
5. Do not use in an environment with temperature cycles.
Consult with SMC if switches are used where there are temperature cycles other than normal temperature changes, as they may be adversely affected internally.
6. Do not use in an environment where there is excessive impact shock.
<Reed switch>
When excessive impact ( $300 \mathrm{~m} / \mathrm{s}^{2}$ or more) is applied to a reed switch during operation, the contact point will malfunction and generate or cut off a signal momentarily ( 1 ms or less). Consult with SMC regarding the need to use a solid state switch depending upon the environment.
7. Do not use in an area where surges are generated.
<Solid state switch>
When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in the area around cylinders (actuators) with solid state auto switches, this may cause deterioration or damage to the switches. Avoid sources of surge generation and crossed lines.

Series CLS
Auto Switch Precautions 4
Be sure to read this before handling.

## Operating Environment

## $\triangle$ Caution

1. Avoid accumulation of iron debris or close contact with magnetic substances.
When a large amount of ferrous debris such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch cylinder (actuator), it may cause the auto switch (actuator) to malfunction due to a loss of the magnetic force inside the cylinder.
2. Consult with SMC concerning water resistance, elasticity of lead wires, usage at welding sites, etc.
3. Do not use in direct sunlight.
4. Do not mount the product in locations where it is exposed to radiant heat.

## Maintenance

## $\triangle$ Warning

1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
1) Securely tighten switch mounting screws.

If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.
2) Confirm that there is no damage to lead wires.

To prevent faulty insulation, replace switches or repair lead wires, etc., if damage is discovered.
3 ) Confirm the lighting of the green light on the 2-colour indicator type switch.
Confirm that the green LED is on when stopped at the established position. If the red LED is on, the mounting position is not appropriate. Readjust the mounting position until the green LED illuminates.
2. Maintenance procedures are outlined in the operation manual.
Not following proper procedures could cause the product to malfunction and could lead to damage to the equipment or machine.
3. Removal of equipment, and supply/exhaust of compressed air
Before any machinery or equipment is removed, first ensure that the appropriate measures are in place to prevent the fall or erratic movement of driven objects and equipment, then cut off the electric power and reduce the pressure in the system to zero. Only then should you proceed with the removal of any machinery and equipment.
When machinery is restarted, proceed with caution after confirming that appropriate measures are in place to prevent cylinders from sudden movement.

# Series CLS Specific Product Precautions 1 

Be sure to read this before handling. For Safety Instructions, Actuator Precautions, refer to "Precautions for Handling Pneumatic Devices" (M-03-E3A).


## Design of Equipment and Machinery

## $\triangle$ Warning

1. Construct so that the human body will not come into direct contact with driven objects or the moving parts of the cylinder with brake.
Devise a safe structure by attaching protective covers that prevent direct contact with the human body, or in cases where there is a danger of contact, provide sensors or other devices to perform an emergency stop, etc., before contact occurs.
2. Use a balance circuit, taking cylinder lurching into consideration.
In cases such as an intermediate stop, where a lock is operated at a desired position within the stroke and air pressure is applied from only one side of the cylinder, the piston will lurch at high speed when the lock is released. In such situations, there is a danger of causing human injury by having hands or feet, etc., caught, and also a danger of causing damage to the equipment. In order to prevent this lurching, a balance circuit such as the recommended air pressure circuits (Back page 8) should be used.
3. When designing equipment and machinery, give consideration to clearance and mounting orientation so that manual release of the lock (using the manual release bolt) will be possible.

* Minimum Clearance for Manual Release

Bore size $(\mathrm{mm})$	Clearance $(\mathrm{mm})$
$\mathbf{1 2 5}$	50
$\mathbf{1 4 0}$	60
$\mathbf{1 6 0}$	
$\mathbf{1 8 0}$	70
$\mathbf{2 0 0}$	80
$\mathbf{2 5 0}$	90

## Selection

## Warning

1. When in a locked condition, do not apply a load accompanied by an impact shock, strong vibration or turning force, etc.
Use caution, because an external action such as an impacting load, strong vibration or turning force, may damage the locking mechanism or reduce its life.
2. Consider stopping accuracy and the amount of overrun when an intermediate stop is performed.
Due to the nature of a mechanical lock, there is a momentary lag with respect to the stop signal, and a time delay occurs before stopping. The cylinder stroke resulting from this delay is the overrun amount. The difference between the maximum and minimum overrun amounts is the stopping accuracy.

- Place a limit switch before the desired stopping position, at a distance equal to the overrun amount.
- The limit switch must have a detection length (dog length) of the overrun amount $+\alpha$.
- SMC's auto switches have operating ranges from 8 to 14 mm (depending on the switch model).
When the overrun amount exceeds this range, self-holding of the contact should be performed at the switch load side.
* Refer to page 2 regarding stopping accuracy.


3. In order to further improve stopping accuracy, the time from the stop signal to the operation of the lock should be shortened as much as possible.
To accomplish this, use a device such as a highly responsive electric control circuit or solenoid valve driven by direct current, and place the solenoid valve as close as possible to the cylinder.
4. Note that stopping accuracy will be influenced by changes in piston speed.
When piston speed changes during the course of the cylinder stroke due to variations in the load or disturbances, etc., the dispersion of stopping positions will increase. Therefore, consideration should be given to establishing a standard speed for the piston just before it reaches the stopping position.
Moreover, the dispersion of stopping positions will increase during the cushioned portion of the stroke and during the accelerating portion of the stroke after the start of operation, due to the large changes in piston speed.

Series CLS Specific Product Precautions 2
Be sure to read this before handling. For Safety Instructions, Actuator Precautions, refer to "Precautions for Handling Pneumatic Devices" (M-03-E3A).

## Selection

## © Warning

5. Holding force (maximum static load) means the maximum capability of holding a static load that is not accompanied by vibration or impact under the condition that no load is applied. Therefore, it does not refer to a load that cannot be held constantly.
Determine the optimum bore size which meets your application based on the model selection procedure. The procedures for Model Selection, assuming the intermediate stop application (including the emergency stop in operation), are shown on the front matter pages 1 and 2 . Only when locking the cylinder in a condition where a kinetic energy is not applied, such as in a drop prevention application, the maximum load weight when using the lock should not exceed the upper limit of the load weight, according to the operating pressure, when the maximum speed is $\mathrm{V}=$ $100 \mathrm{~mm} / \mathrm{s}$ in Graph 5 through 7 on the front matter page 2.

## Mounting

## © Warning

1. Be certain to connect the piston rod end to the load with the lock released.
If connected when in the locked condition, turning force or a load greater than the holding force may operate on the piston rod and cause damage to the lock mechanism. The CLS series is equipped with an emergency unlocking mechanism, however, the load should be connected to the piston rod end with the lock in the released condition. This can be accomplished manually or by simply connecting an air line to the unlocking port and supplying air pressure of 0.25 MPa or more.
2. The unit is shipped from the factory with the lock in the released condition. Since the lock will not operate in this condition, be sure to put it in the locked condition before operation, following the procedure given below.
(1) Remove the manual release bolt (B) using a hexagon wrench. (The manual release bolt can be removed easier by applying air pressure to the lock release port.)
(2) Confirm that the white mark on the lock monitor (A) is in the LOCK position.
(3) Plug the bolt insertion hole with the included hexagon socket head taper plug.

Manual Release Bolt Unit: mm

Bore size $(\mathrm{mm})$	Size
$\mathbf{1 2 5}$	$\mathrm{M} 6 \times 35 \ell$
$\mathbf{1 4 0}$	$\mathrm{M} 6 \times 40 \ell$
$\mathbf{1 6 0}$	$\mathrm{M} 8 \times 40 \ell$
180	$\mathrm{M} 10 \times 50 \ell$
$\mathbf{2 0 0}$	$\mathrm{M} 10 \times 55 \ell$
$\mathbf{2 5 0}$	$\mathrm{M} 12 \times 70 \ell$

Hexagon Socket Head Taper Plug Size

Bore size (mm)	Hexagon socket head taper plug
125	Rc $1 / 4$
140	Rc $3 / 8$
160	Rc $1 / 2$
180	
200	Rc $3 / 4$
250	

* Use a hexagon socket head cap screw if the included manual release bolt is not available.

Be sure to read this before handling. For Safety Instructions, Actuator Precautions, refer to "Precautions for Handling Pneumatic Devices" (M-03-E3A).

## Mounting

## $\triangle$ Caution

2. Cautions when using the base unit and when changing bracket positions, etc.
The lock unit and cylinder rod cover are assembled as shown in the drawing below. For this reason, it cannot be installed as in the case of common air cylinders, by using the basic type and screwing the cylinder tie-rods directly to machinery.
Furthermore, when brackets are replaced, the unit holding tierods may become loose and they should be retightened.

3. When installing the cylinder to machinery, etc., secure enough clearance and consider the mounting direction for manual lock release (releasing with the manual release bolt).

$*$ Minimum Clearance for Manual Release

Bore size $(\mathrm{mm})$	Clearance $(\mathrm{mm})$
$\mathbf{1 2 5}$	50
$\mathbf{1 4 0}$	60
$\mathbf{1 6 0}$	70
$\mathbf{1 8 0}$	80
$\mathbf{2 0 0}$	90
$\mathbf{2 5 0}$	

## Adjustment

## $\triangle$ Caution

1. Adjust the cylinder's air balance. Balance the load by adjusting the air pressure in the rod and head sides of the cylinder with the load connected to the cylinder and the lock in a released condition. Lurching of the cylinder when unlocked can be prevented by carefully adjusting this air balance.
2. Adjust the mounting positions of the detectors on auto switches, etc. When intermediate stops are to be performed, adjust the mounting positions of detectors on auto switches, etc., taking into consideration the overrun amount with respect to the desired stopping positions.

## Pneumatic Circuits

## . Warning

1. Be certain to use a pneumatic circuit which will apply balancing pressure to both sides of the piston when in a locked stop.
In order to prevent cylinder lurching when restarting or manually unlocking after a locked stop, a circuit should be used to apply balancing pressure to both sides of the piston, thereby canceling the force generated by the load in the direction of piston movement.
2. Use a solenoid valve for unlocking with an effective area that is $25 \%$ or more of the effective area of the cylinder drive solenoid valve.
The larger the effective sectional area is, the shorter the locking time will be (the overrun amount will be shorter), and stopping accuracy will be improved.
3. Place the solenoid valve for unlocking close to the cylinder, and no further than the cylinder drive solenoid valve.
The shorter the distance from the cylinder (the shorter the piping), the shorter the overrun amount will be, and stopping accuracy will be improved.
4. Allow at least 0.5 seconds from a locked stop (intermediate stop of the cylinder) until release of the lock.
When the locked stop time is too short, the piston rod (and load) may lurch at a speed greater than the control speed of the speed controller.
5. When restarting, control the switching signal for the unlocking solenoid valve so that it acts before or at the same time as the cylinder drive solenoid valve.
If the signal is delayed, the piston rod (and load) may lurch at a speed greater than the control speed of the speed controller.

## 6. Basic circuits


2. [Vertical]
[Load in direction of rod extension] [Load in direction of rod retraction]


Be sure to read this before handling. For Safety Instructions, Actuator Precautions, refer to "Precautions for Handling Pneumatic Devices" (M-03-E3A).

## Lock Monitor

## $\triangle$ Caution

The CLS series is equipped with a lock monitor on the lock unit. Use the lock monitor as a criterion to confirm the operating condition of the lock unit (brake piston) and the state of wear (life) of the brake shoe.


Unlocked


Locked by operation of brake

* Please note that the position of the mark when locked varies somewhat from unit to unit.


## Brake shoe life

The position of the lock condition mark on the lock monitor gradually moves to the right side with wear of the shoe,
 etc. When the mark is half way or more into the CHECK zone,
this indicates that the brake shoe is near the end of its life. (The brake will not immediately become ineffective in this condition.)

## Auto Switch for Lock Unit

## $\triangle$ Caution

1. By installing a switch on the brake cylinder of the CLS series, the operating condition (unlocked side) of the lock unit (brake piston) can be detected as a switch signal.

* The condition of the lock monitor and the detection signal from the lock unit switch do not directly confirm the locking condition at the piston rod, but confirm this indirectly from the position of the brake piston.


## Lock unit mechanism

The spring force applied to the brake piston is transmitted and magnified through the lever, eccentric cam shaft and brake shoe holder, finally tightening on the piston rod via the brake shoe and locking the piston rod by means of their mutual frictional force.


## Series CLS Specific Product Precautions 5

Be sure to read this before handling. For Safety Instructions, Actuator Precautions, refer to "Precautions for Handling Pneumatic Devices" (M-03-E3A).

## Manual Unlocking

## $\triangle$ Caution


[Principle]
When the manual release bolt is screwed clockwise, the brake piston is pulled back and the spring is compressed. This causes the lever to be returned, releasing the lock.

## Operating Environment

## $\triangle$ Caution

1. In locations where the cylinder body will be directly exposed to cutting oil or coolant, etc., a cover or other protection should be provided for the cylinder body and rod.

## Maintenance

## © Caution

1. The operating condition of the lock unit (brake piston) can be confirmed externally by means of the lock monitor.
1) When the lock monitor mark has moved half way or more into the CHECK zone
If used in this condition, the holding force will gradually decrease. If an operational problem is found in the course of checking the lock's operating condition, early replacement of the cylinder body or lock unit is necessary. Contact SMC regarding replacement of the lock unit.
2) When the lock monitor mark moves into the CHECK zone prematurely
Since there is a possibility of damage to the lock unit, consult with SMC after reviewing the method of operation.
2. This cylinder is a non-lube type. Do not lubricate the cylinder or apply grease to the piston rod, as there is a danger of drastically reducing brake performance.
3. When replacing seals in the base cylinder, it is recommended that the lock unit be separated from the base cylinder so that replacement work can be done on the cylinder alone. Refer to separate instructions for seal replacement.
4. Never disassemble the lock unit.

- A heavy duty spring is contained in part of the unit, which presents a serious hazard if disassembly is performed incorrectly.
- In addition, the lock unit is adjusted before shipment. If readjustment is not performed correctly after reassembly, a serious danger will be created, as performance will not meet specifications.


SMC Pneumatik GmbH (Austria). Girakstrasse 8, A-2100 Korneuburg Phone: +43 2262-62280, Fax: +43 2262-62285 E-mail: office@smc.at http://www.smc.at


SMC Pneumatics N.V./S.A Nijverheidsstraat 20, B-2160 Wommelgem Phone: +32 (0)3-355-1464, Fax: +32 (0)3-355-1466 E-mail: post@smcpneumatics.be http://www.smcpneumatics.be


## Bulgaria

SMC Industrial Automation Bulgaria EOOD 16 kliment Ohridski Blvd., fl. 13 BG-1756 Sofia Phone: 35929744492 Fax: 3592974519 E-mail: office@smcbg E-mail. office@smc.bg
http://www.smc.bg


SMC Industrijska automatika d oo Crnomerec 12, 10000 ZAGREB Phone: +38513776674, Fax: +385 13776674 E-mail: office@smc.hr http://www.smceu.com


Czech Republic
SMC Industrial Automation CZ s.r.o Hudcova 78a, CZ-61200 Brno
Phone: +420 5414 24611, Fax: +420 541218034 E-mail: office@smc.cz
http://www.smc.cz

SMC Pneumatik A/S
Knudsminde 4B, DK-8300 Odder
Phone: +45 70252900, Fax: +45 70252901
E-mail: smc@smc-pneumatik.dk
http://www.smcdk.com


SMC Pneumatics Estonia OU
Laki 12-101, 10621 Tallinn
Phone: +372 (0)6593540, Fax: +372 (0)6593541
E-mail: smc@smcpneumatics.ee
http://www.smcpneumatics.ee


Finland
SMC Pneumatics Finland OY
PL72, Tiistinniityntie 4, SF-02031 ESPOO
Phone: +358 207513513, Fax: +358 207513595
E-mail: smcfi@smc.fi
http://www.smc.fi


SMC Pneumatique, S.A
1, Boulevard de Strasbourg, Parc Gustave Eiffel Bussy Saint Georges F-77607 Marne La Vallee Cedex 3
Phone: +33 (0)1-6476 1000, Fax: +33 (0)1-6476 1010
E-mail: contact@smc-france.fr
http://www.smc-france.ff


Germany
SMC Pneumatik GmbH
Boschring 13-15, D-63329 Egelsbach
Phone: +49 (0)6103-4020, Fax: +49 (0)6103-402139
E-mail: info@smc-pneumatik.de
http://www.smc-pneumatik.de
 Greece
S. Parianopoulus S.A.

7, Konstantinoupoleos Street, GR-11855 Athens Phone +30 (0) $1-3426076$ Fax: +30 (0) $1-3455578$
E-mail: parianos@hol.gr
E.tp://wwnanos@hol.gr


Hungary
SMC Hungary Ipari Automatizálási Kft. Budafoki ut 107-113, H-1117 Budapest Phone: +36 1371 1343, Fax: +36 13711344 E-mail: office@smc-automation.hu http://www.smc-automation.hu
 Ireland
SMC Pneumatics (Ireland) Ltd
2002 Citywest Business Campus, Naas Road, Sagaart, Co. Dublin Phone: +353 (0) 1-403 9000, Fax: +353 (0)1-464-0500 E-mail: sales@smcpneumatics.ie http://www.smcpneumatics.ie


Via Garibaldi 62, I-20061Carugate, (Milano)
Phone: +39 (0)2-92711, Fax: +39 (0)2-9271365
E-mail: mailbox@smcitalia.it
http://www.smcitalia.it


Latvia
SMC Pneumatics Latvia SIA
Smerla 1-705, Riga LV-1006, Latvia
Phone: +371 781-77-00, Fax: +371 781-77-0
E-mail: info@smclv.lv
http://www.smclv.lv
 Lithuania
SMC Pneumatics Lietuva, UAB
Savanoriu pr. 180, LT-01354 Vilnius, Lithuania Phone: +37052648126, Fax: +37052648126


SMC Pneumatics BV
De Ruyterkade 120, NL-1011 AB Amsterdam
Phone: +31 (0)20-5318888, Fax: +31 (0)20-5318880
E-mail: info@smcpneumatics.n
http://www.smcpneumatics.nl


Norway
SMC Pneumatics Norway A/S Vollsveien 13 C, Granfos Næringspark N-1366 Lysaker Tel: +47 671290 20, Fax: +47 67129021 E-mail: post@smc-norge.no http://www.smc-norge.no

## Poland

SMC Industrial Automation Polska Sp.z.o.o. ul. Konstruktorska 11A, PL-02-673 Warszawa, Phone: +48 22548 5085, Fax: +48 225485087 E-mail: office@smc.pl
http://www.smc.pl

## (4)

## Portuga

SMC Sucursal Portugal SA Rua de Eng ${ }^{\circ}$ Ferreira Dias 452, 4100-246 Porto Phone: +351 22-610-89-22, Fax: +351 22-610-89-36
E-mail: postpt@smc.smces.es
http://www.smces.es


SMC Romania srl
Str Frunzei 29, Sector 2, Bucharest Phone: +40213205111 , Fax: +40213261489 E-mail: smcromania@smcromania.ro http://www.smcromania.ro


SMC Pneumatik LLC
4B Sverdlovskaja nab, St. Petersburg 195009
Phone.:+812 718 5445, Fax:+812 7185449
E-mail: info@smc-pneumatik.ru
http://www.smc-pneumatik.ru

## $\neq$ Slovakia

SMC Priemyselná Automatizáciá, s.r.o Námestie Martina Benku 10, SK-81107 Bratislava Phone: + 421244456725 , Fax: +421244456028 E-mail: office@smc.sk http://www.smc.sk


Slovenia
SMC industrijska Avtomatika d.o.o.
Grajski trg 15, SLO-8360 Zuzemberk Phone + 38673885240 Fax- +3867388524 E-mail: office@smc-ind-avtom.si
http://www.smc-ind-avtom.si

## OTHER SUBSIDIARIES WORLDWIDE:

ARGENTINA, AUSTRALIA, BOLIVIA, BRASIL, CANADA, CHILE, CHINA, HONG KONG, INDIA, INDONESIA, MALAYSIA, MEXICO, NEW ZEALAND, PHILIPPINES, SINGAPORE, SOUTH KOREA, TAIWAN, THAILAND, USA, VENEZUELA


[^0]:    * Since the lock section for Series CLS is normally replaced as a unit, replacement seal kits are for the cylinder section only.
    ** Seal kits are sets consisting of items (60, 62, (63), (64), (65) and (67), which can be ordered using the order number for each cylinder bore size.

[^1]:    * With pre-wire connector is also available in solid state auto switches. For specifications, refer to "SMC Best Pneumatics" catalogue.

[^2]:    (Reed switch) Because there is no current leakage, the load voltage will not increase when turned OFF. However, depending on the number of switches in the ON state, the indicator lights may sometimes dim or not light because of the dispersion and reduction of the current flowing to the switches.

[^3]:    * Stripper for a round cable (ø2.0) can be used for a 2-wire type cable.

