Electric Actuators

Rod Type Guide Rod Type

Step Motor (Servo/24 VDC)

Rod Type Series LEY

Long stroke:
Max. 500 mm (Ley32, 40)
Mounting variations
-Direct mounting: 3 directions, Bracket mounting: 3 types -Either positioning or pushing control can be selected. Possible to hold the actuator with the rod pushing to a workpiece, etc.

Guide Rod Type Series LEYG

Size: 16, 25, 32, 40
Lateral end load: 5 times more

* Compared with rod type, size 25 and 100 stroke

Compatible with sliding bearing and ball bushing bearing.
Compatible with moment load and stopper (sliding bearing).
-Either positioning or pushing control can be selected.
Possible to hold the actuator with the rod pushing to a workpiece, etc.

AC Servo Motor Type

* Not applicable to UL

Rod Type Series LEY Size: 25, 32, 63

- High output motor (100/200/400 W)
-Improved high speed transfer ability - High acceleration/deceleration compatible (5,000 mm/s²)
- Pulse input/CC-Link/SSCNET III types
-With internal absolute encoder
(For LECSB/C/S)
Rod type

Note) LEY63 is applicable only to the in-line motor type

Guide rod type/ In-line motor type

Step Motor (Servo/24 VDC)	Controller/	C
Servo Motor (24 VDC)	eldbus compatible	
Step data input type Series LECP6/LECA6	Network Series JXC $\square 1$	
Step data input type Series JXC73/83	Series JXC92/93	
-Programless type Series LECP1		
Pulse input type Series LECPA		(1)

Series LEY

Rod Type Series LEY/Size: 16, 25, 32, 40

Control of intermediate positioning and pushing is possible. High precision with ball screws (Positioning repeatability: $\pm 0.02 \mathrm{~mm}$)

In-line motor type Height dimension shortened by up to 49%

A Dimension
[mm]

Size	In-line motor	Motor top mounting
$\mathbf{1 6}$	$\mathbf{3 5 . 5}$	67.5
$\mathbf{2 5}$	$\mathbf{4 6 . 5}$	92
$\mathbf{3 2 , 4 0}$	61	118

Features 1

AC Servo Motor Type

Rod Type Series LEY /Size: 25, 32, 63

- High output motor (100/200/400 W)
- Improved high speed transfer ability
- High acceleration/deceleration compatible ($5000 \mathrm{~mm} / \mathrm{s}^{2}$)
- Pulse input/CC-Link direct input/SSCNET III types
- With internal absolute encoder
* Incremental encoder can also be selected.
- Positioning repeatability $\pm 0.01 \mathrm{~mm}$ (High precision type)

Speed

Step Motor (Servo/24 VDC) Servo Motor (24 VDC) Type

Guide Rod Type Series LEYG /Size: 16, 25, 32, 40
Compact integrated guide rods Lateral load resistance and high non-rotating accuracy

- Sliding bearing
 Suitable for lateral load applications such as a stopper where shock is applied
 - Ball bushing bearing
 Smooth operation suitable for pusher and lifter
 Improved rigidity

Compatible with sliding bearing and ball bushing bearing

Lateral end load: 5 times more*

* Compared with rod type, size 25 and 100 stroke

AC Servo Motor Type

Guide Rod Type Series LEYG /Size: 25, 32

Bore size [mm]	16	25	32	40
Sliding bearing	$\pm 0.06^{\circ}$		$\pm 0.05^{\circ}$	
Ball bushing bearing	$\pm 0.05^{\circ}$	$\pm 0.04^{\circ}$		

When the cylinder is retracted (initial value), the non-rotating accuracy without a load or deflection of the guide rods will be below the values shown in the table.

Dustidip proof (IP65 equivalent)

Note) IP65 enclosure: The protection structure against solid foreign objects is dust-tight type and the protection structure against water is water-jet-proof type. Dust-tight means that no dust can enter the inside of the equipment.
Water-jet-proof means that the product is not adversely affected by direct water jets from any direction. That is, even when direct water jets are applied to the product for 3 minutes by means of the pre-determined method, there is no water entry that hinders correct operation inside the equipment. Be sure to take appropriate protection measures when the product is used in an environment where it is constantly exposed to water or fluids other than water splash. In particular, the product cannot be used in an environment with oil, such as cutting oil or cutting fluid.
Enclosure: IP65 Note)
-Max. stroke: 500 mm*

* For size 32

Reduces internal pressure fluctuation to prevent dust and water droplets from entering.

* Be sure to attach tubing.
* For size 63, order a fitting separately.

Water resistant type

For checking the limit and intermediate signal

* Order the water resistant 2-colour indication solid state auto switch separately. (Refer to page 169.)

Step Data Input Type series LECP6/LECA6

Simple Setting to Use Straight Away

 OEasy Mode for Simple Setting If you want to use it right away, select "Easy Mode."Step motor (Servo/24 VDC) LECP6

Servo motor
(24 VDC) LECA6

> <When a PC is used> Controller setting software .. Step data setting, test operation, move jog and move for the constant rate can be set and operated on one screen.

<When a TB (teaching box) is used>

- Simple screen without scrolling promotes ease of setting and operating.
- Pick up an icon from the first screen to select a function.
- Set up the step data and check the monitor on the second screen.

Example of checking the operation status

Operation status can be checked.

Fieldbus Network

Fieldbus-compatible Gateway (GW) Unit

Series LEC-G

© Conversion unit for Fieldbus network and LEC serial communication
(o) Two methods of operation

Step data input: Operate using preset step data in the controller.
Numerical data input: The actuator operates using values such as position and speed from the PLC.
© Values such as position, speed can be checked on the PLC.

Features 5

© Normal Mode for Detailed Setting

Select normal mode when detailed setting is required.

- Step data can be set in detail. - Parameters can be set.
- Signals and terminal status can be monitored
- JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.
<When a PC is used> Controller setting software
- Step data setting, parameter setting, monitor, teaching, etc., are indicated in different windows.

The actuator and controller are provided as a set. (They can be ordered separately.)
Confirm that the combination of the controller and the actuator is correct.

<Check the following before use.>

(1) Check the actuator labell for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

Programless Type series LECP1

No Programming

Capable of setting up an electric actuator operation without using a PC or teaching box

Pulse Input Type series LECPA

A driver that uses pulse signals to allow positioning at any position. The actuator can be controlled from the customers' positioning unit.

Series LECPA

- Return-to-origin command signal

Enables automatic return-to-origin action.
With force limit function (Pushing force/Gripping force operation available)
Pushing force/Positioning operation possible by switching signals.

Function

Item	Step data input type LECP6/LECA6	Programless type LECP1	Pulse input type LECPA
Step data and parameter setting	- Input from controller setting software (PC) - Input from teaching box	- Select using controller operation buttons	- Input from controller setting software (PC) - Input from teaching box
Step data "position" setting	- Input the numerical value from controller setting software (PC) or teaching box - Input the numerical value - Direct teaching - JOG teaching	- Direct teaching - JOG teaching	- No "Position" setting required Position and speed set by pulse signal
Number of step data	64 points	14 points	-
Operation command (//O signal)	Step No. [IN*] input \Rightarrow [DRIVE] input	Step No. [IN^{*}] input only	Pulse signal
Completion signal	[INP] output	[OUT** output	[INP] output

Setting Items

	Item	Contents	Easy mode		Normal mode	Step data input type LECP6/LECA6	Pulse input type LECPA	Programless type LECP1
			TB	PC	TB•PC			
Step data setting (Excerpt)	Movement MOD	Selection of "absolute position" and "realive position"	\triangle	-	-	Set at ABS/INC	No setting required	Fixed value (ABS)
	Speed	Transfer speed	-	-	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$		Select from 16-level
	Position	[Position]: Target position [Pushing]: Pushing start position	\bigcirc	\bigcirc	\bigcirc	Set in units of 0.01 mm		Direct teaching JOG teaching
	Acceleration/Deceleration	Acceleration/deceleration during movement	-	\bigcirc	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$		Select from 16-level
	Pushing force	Rate of force during pushing operation	-	-	-	Set in units of 1%	Set in units of 1%	Select from 3-evel (weak, medium, strong)
	Trigger LV	Target force during pushing operation	\triangle	\bigcirc	\bigcirc	Set in units of 1%	Set in units of 1%	No setting required (same value as pusting force)
	Pushing speed	Speed during pushing operation	\triangle	\bigcirc	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	No setting required
	Moving force	Force during positioning operation	\triangle	\bigcirc	-	Set to 100%	Set to (Different values for each actuator) \%	
	Area output	Conditions for area output signal to turn ON	\triangle	-	-	Set in units of 0.01 mm	Set in units of 0.01 mm	
	In position	[Position]: Width to the target position [Pushing: How much it moves during pushing	\triangle	\bigcirc	\bigcirc	Set to 0.5 mm or more (Units: 0.01 mm)	Set to (Different values for each actuator) or more (Units: 0.01 mm)	
Parameter setting (Excerpt)	Stroke (+)	+ side limit of position	\times	\times	\bigcirc	Set in units of 0.01 mm	Set in units of 0.01 mm	
	Stroke (-)	- side limit of position	\times	\times	-	Set in units of 0.01 mm	Set in units of 0.01 mm	
	ORIG direction	Direction of the return to origin can be set.	\times	\times	-	Compatible	Compatible	Compatible
	ORIG speed	Speed during return to origin	\times	\times	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	
	ORIG ACC	Acceleration during return to origin	\times	\times	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	ett
Test	JOG		-	\bigcirc	\bigcirc	Continuous operation at the set speed can be tested while the switch is being pressed.	Continuous operation at the set speed can be tested while the switch is being pressed.	Hold down MANUAL button (®®) for uniform sending (speed is specified value)
	MOVE		\times	-	\bigcirc	Operation at the set distance and speed from the current position can be tested.	Operation at the set distance and speed from the current position can be tested.	Press MANUAL button (®()) once for sizing operation (speed, sizing amount are specified values)
	Return to ORIG		\bigcirc	\bigcirc	-	Compatible	Compatible	Compatible
	Test drive	Operation of the specified step data	-	-		Compatible	Not compatible	Compatible
	Forced output	ONIOFF of the output terminal can be tested.	\times	\times	-	Compatible	Compatible	Not compatible
Monitor	DRV mon	Current position, speed, force and the specified step data can be monitored.	\bigcirc	\bigcirc	\bigcirc	Compatible	Compatible	
	In/Out mon	Current ON/OFF status of the input and output terminal can be monitored.	\times	\times	\bigcirc	Compatible	Compatible	
ALM	Status	Alarm currently being generated can be confirmed.	\bigcirc	\bigcirc	-	Compatible	Compatible	Compatible (display alarm group)
	ALM Log record	Alarm generated in the past can be contirmed.	\times	\times	-	Compatible	Compatible	Not compatible
File	Save/Load	Step data and parameter can be saved, forwarded and deleted.	\times	\times	\bigcirc	Compatible	Compatible	
Other	Language	Can be changed to Japanese or English.	-	-	-	Compatible	Compatible	

\triangle : Can be set from TB Ver. 2.** (The version information is displayed on the initial screen)

* Programless type LECP1 cannot be used with the teaching box and controller setting kit.

System Construction/Pulse Signal

System Construction/Fieldbus Network

Gateway (GW) unit Page 77
Applicable Fieldbus protocols
CC-Link Ver. 2.0 DeviceNet ${ }^{\text {TM }}$ PROFIBUS DP EtherNet/IPTM

OPower supply
connector (Accessory)

- Communication
connector
(Accessory)
* CC-Link Ver. 2.

DeviceNet ${ }^{\text {TM }}$
anches Cable betw

Applicable Fieldbus protocols	Max. number of connededible controllars
CC-Link Ver. 2.0	12
DeviceNet ${ }^{\text {TM }}$	8
PROFIBUS DP	5
EtherNet/IPTM	12

Compatible Controller

Step motor controller (Servo/24 VDC)	Series LECP6
Servo motor controller (24 VDC)	Series LECA6

Note 1) Connect the 0 V terminals for both the controller input power supply and gateway unit power supply.
When conformity to UL is required, the electric actuator and controller should be used with a UL 1310 Class 2 power supply.

Series LECS \square List

Note 1) For positioning type, setting needs to be changed to use with maximum set values.
Setup software (MR Configurator2 ${ }^{\text {TM }}$) LEC-MRC2E is required.
Note 2) Available when the Mitsubishi motion controller is used for the master equipment.

Servo adjustment using auto gain tuning

Auto resonant filter function

- Control the difference between command value and actual action.
* High-speed positioning is possible since gains etc., are adjusted automatically!

Auto damping control function

- Automatically suppress low frequency machine vibrations (up to 100 Hz).
* Can be set automatically by auto tuning.

With display setting function

Display
Display the monitor, parameter and alarm.

Settings
Set parameters and monitor display, etc., with push buttons.

(With the front cover open)
LECSB
 the test operation
(With the front cover open)
LECSS

System Construction

Incremental encoder compatible Series LECSA
（Pulse input type／Positioning type）

Provided by customer	
Power supply Single phase 100 to 120 VAC（ $50 / 60 \mathrm{~Hz}$ ） 200 to 230 VAC（ $50 / 60 \mathrm{~Hz}$ ）	
	$\begin{aligned} & \text { e } 187 \\ & \text { tion } \\ & =- \\ & \hline \end{aligned}$
－Motor cable Page 185	
Standard cable	Robotic cable
LE－CSM－S［	LE－CSM－Rワ口
－Lock cable Page 185	
Standard cable	Robotic cable
LE－CSB－S $\square \square$	LE－CSB－Rワ口
Electric actua Rod type Series LEY	
Encoder cable Page 185	
Standard cable	Robotic cable
LE－CSE－Sロロ	LE－CSE－Rワロ

Provided by customer

Control Page 179 circuit power
supply conne supply connector
（Accessory）

OOption
Setup software Page 188
（MR Configurator2 ${ }^{\text {TM }}$ ）
LEC－MRC2E

Order USB cable（LEC－MR－ J3USB）separately to use this software．
－USB cable Page 188 LEC－MR－J3USB

Provided by customer
PLC（Positioning unit）
Power supply for I／O signal 24 VDC

Absolute encoder compatible Series LECSB

（Pulse input type）

Provided by customer

Encoder cable Page 185

Standard cable	Robotic cable
LE－CSE－S $\square \square$	LE－CSE－R $\square \square$

Driver

OUSB cable Page 188
OOption LEC－MR－J3USB

＊Order USB cable（LEC－MR－ J3USB）separately to use this software．

Provided by customer

PLC（Positioning unit）
 24 VDC

System Construction

Absolute encoder compatible Series LECSS

System Construction

Absolute encoder compatible Series LECSS-T

[^0]
SMC Electric Actuators

Slider Type Step Motor (Servol24 VDC) Servo Motor (24 VDC) AC Servo Motor

High Rigidity Slider Type AC Servo Motor

Guide Rod Slider Step Motor (Servol24 VDC)

SMC Electric Actuators

Slide Table Step Motor (Sevo/24 VDC) Servo Motor (24 VDC)

Controllers/Driver

Fieldbus-compatible Network Controller/Gateway Unit				
Series JXC $\square 1$		Series JXC92	Series JXC93	Series LEC-G
$\frac{\text { PRQPFI }}{\text { TBDTI }}$	-5	Etheri'et/IP	Etherilet/IP	$\frac{\text { PRQQEI }}{\text { TBDTST }}$
EtherCAT. ${ }^{*}$				CC-Link 12
DeviceNet	5	51		DeviceNet
Etherivet/IP	4	回缶	-	
(2) IO-Link	1			EtheriNet/IP

AC Servo Motor
Pulse Input Type
Series LECSA
Series LECSB
\bullet Absolute encoder (LECSB)

- Built-in positioning function (LECSA)

MECHATROLINK II Type
Series LECYM
IIMECHATROLINK-II

MECHATROLINKIII Type
Series LECYU
IIMECHATROLINK-III

SSCNETIII/H Type

Series LECSS-T
(SSCNET/II/H

Electric Actuator Rod Type series LEY

Controller/Driver LEC

Electric Actuator Guide Rod Type Series LEYG

Step Motor (Servo/24 vDC)/
 Servo Motor (24 vDC) Type

ORod Type Series LEY	
	Model Selection ... 3
	How to Order...Page 13
	Specifications... 15
	Construction ...Page 17
	Dimensions ...Page 19
	Accessory Mounting BracketsPage 25
	Auto Switch...age 27
()Rod Type Series LEY-X5 Dust/Drip proof (IP65 equivalent)	
	Model Selection ..Page 9
	How to Order..age 30
	Specifications.. 31
	Construction ... 33
	Dimensions ..Page 34
©Rod Type Series 25A-LEY Secondary Batteries Compatible	
	How to Order...Page 37
	Specific Product Precautions ...Page 39
©Guide Rod Type Series LEYG	
	Model Selection ... ${ }^{\text {Page }} 40$
	How to Order.. ${ }^{\text {Page }} 47$
	Construction ..age 51
	Support Block .. ${ }^{\text {Page }} 57$
	Specific Product Precautions..Page 59
OStep Motor (Servo/24 VDC)/Servo Motor (24 VDC)	
	Controller/Driver
	Step Data Input Type/Series LECP6/LECA6Page 65
	Controller Setting Kit/LEC-W2Page 74
	Teaching Box/LEC-T1 ..Page 75
	Gateway Unit/Series LEC-G..Page 77
	Programless Controller/Series LECP1Page 80
	Step Motor Driver/Series LECPAPage 87
	Controller Setting Kit/LEC-W2Page 94
	Teaching Box/LEC-T1 ...Page 95
	Direct Input Type Controller/Series JXC $\square 1$ 1..............Page 99
	Multi-Axis Step Motor Controller/Series JXC73/83/92/93 ...Page 108

AC Servo Motor Type

ORod Type Series LEY Size 25,32

Mo	Page 127
How to Order.	. Page 133
Specifications	. Page 135
Construction	. Page 136
Dimensions	. Page 137

ORod Type Series LEY Size 63

Dust/Drip proof (IP65 equivalent) (Select options)
Model Selection ..Page 127
How to Order.. 143
Specifications.. 144
Construction .. 145
Dimensions .. 146

©Rod Type Series 25A-LEY Secondary Batteries Compatible
How to Order...Page 155
Specific Product Precautions. Page 39
OGuide Rod Type Series LEYG
Model Selection Page 157
How to Order Page 163
Construction Page 165
Dimensions. Page 166
Support Block Page 168
Specific Product Precautions. Page 169
OAC Servo Motor Driver/Series LECS \square Page 173
Specific Product Precautions. Page 197
OAC Servo Motor Driver/Series LECSS-T Page 189
OAC Servo Motor Driver/series LECY \square
Page 200

SSMC

Dust/Drip proof (IP65 equivalent) Page 30
Series LEY-X5

Rod Type Page 37 Secondary Batieries Comparibe Guide Rod Type Page 40 Series 25A-LEY Series LEYG

Motor top mounting type

Step Motor/Servo Motor Controller Page 64
Step Motor Driver
Series LECP6/LECA6 Series LEC-G Series LECP1 Series LECPA

Series JXC $\square 1$ Series JXC73/83/92/93

Selection Procedure

Positioning Control Selection Procedure

Check the work load-speed. (Vertical transfer)

Step 2 Check the cycle time.

Selection Example

Operating conditions

- Workpiece mass: $4[\mathrm{~kg}] \quad$ •Speed: $100[\mathrm{~mm} / \mathrm{s}]$
- Acceleration/Deceleration: 3,000 [mm/s²]
- Stroke: 200 [mm]

-Workpiece mounting condition: | Vertical upward |
| :--- |
| downward transfer |

Check the work load-speed. <Speed-Vertical work load graph>
Select the target model based on the workpiece mass and speed with reference to the <Speed-Vertical work load graph>.
Selection example) The LEY16B is temporarily selected based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to page 15 for the horizontal work load in the specifications, and page 59 for the precautions.

Step 2

Check the cycle time.

Calculate the cycle time using the following calculation method.

- Cycle time T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$
-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$
-T2: Constant speed time can be found from the following equation

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.

$$
\mathrm{T} 4=0.2[\mathrm{~s}]
$$

Calculation example)
T1 to T4 can be calculated as follows.

L : Stroke [mm] ... (Operating condition)
V : Speed [mm/s] ... (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed
T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
T4: Settling time [s] ... Time until in position is completed
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=100 / 3000=0.033[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=100 / 3000=0.033[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{200-0.5 \cdot 100 \cdot(0.033+0.033)}{100}=1.97[\mathrm{~s}]$
$\mathrm{T} 4=0.2[\mathrm{~s}]$
Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.033+1.967+0.033+0.2=2.233[\mathbf{s}]$

Pushing Control Selection Procedure

Step 3
 Check the lateral load on the rod end.

* The duty ratio is a ratio at the time that can keep being pushed.

Selection Example
Operating conditions

\bullet-Mounting condition: Horizontal (pushing)	•Duty ratio: $20[\%]$	Jig
\bullet-Jig weight: $0.2[\mathrm{~kg}]$	•Speed: $100[\mathrm{~mm} / \mathrm{s}]$	
-Pushing force: $60[\mathrm{~N}]$	•Stroke: $200[\mathrm{~mm}]$	

Step 1

Check the duty ratio.
<Conversion table of pushing force-duty ratio>
Select the [Pushing force] from the duty ratio with reference
to the <Conversion table of pushing force-duty ratio>.
Selection example)
Based on the table below,
-Duty ratio: 20 [\%]
Therefore, the set value of pushing force will be 70 [\%].
<Conversion table of pushing force-duty ratio>
(LEY16/Step motor)

Set value of pushing force [\%]	Duty ratio (\%)	Continuous pushing time (minute)
40 or less	100	-
50	70	12
70	20	1.3
85	15	0.8

* [Set value of pushing force] is one of the step data input to the controller.
* [Continuous pushing time] is the time that the actuator can continuously keep pushing.

Step 2 Check the pushing force. <Force conversion graph>

Select the target model based on the set value of pushing force and force with reference to the <Force conversion graph>.
Selection example)
Based on the graph shown on the right side,

- Set value of pushing force: 70 [\%]
-Pushing force: 60 [N]
Therefore, the LEY16B is temporarily selected.
Step 3 Check the lateral load on the rod end. <Graph of allowable lateral load on the rod end>
Confirm the allowable lateral load on the rod end of the actuator:
LEY16 \square, which has been selected temporarily with reference to the
<Graph of allowable lateral load on the rod end>.
Selection example)
Based on the graph shown on the right side,
\bullet - Jig weight: $0.2[\mathrm{~kg}] \approx 2[\mathrm{~N}]$
- Product stroke: 200 [mm]

Therefore, the lateral load on the rod end is in the allowable range.

Based on the above calculation result, the LEY16B-200 is selected.

<Force conversion graph> Max. 85%
(LEY16/Step motor)

<Graph of allowable lateral load on the rod end>

Speed-Work Load Graph (Guide)

For Step Motor (Servo/24 VDC) LECP6, LECP1, JXCE1/91/P1/D1/L1

LEY25 \square

LEY32 $\square \quad \square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY40 \square

Vertical

LEY16 \square

LEY25 \square

LEY32 \square

LEY40 \square

Speed-Work Load Graph (Guide)
For Step Motor (Servo/24 VDC) LECPA, JXC73/83/92/93

LEY25 \square

LEY32 \square
$\square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY40 \square

Vertical
LEY16 \square

LEY25 \square

LEY32 \square

LEY40 \square

Series LEY

Step Motor (Servo/24 VDC)
Speed-Work Load Graph (Guide)
For Servo Motor (24 VDC) LECA6

Horizontal

LEY16A \square

LEY25A \square

Vertical

LEY16A \square

LEY25A \square

Graph of Allowable Lateral Load on the Rod End (Guide)

Rod Displacement: δ
[Stroke] $=$ [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Size	Stroke [mm]										
	30	50	100	150	200	250	300	350	400	450	500
16	± 0.4	± 0.5	± 0.9	± 0.8	± 1.1	± 1.3	± 1.5	-	-	-	-
25	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 0.5	-	-
32,40	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8

Force Conversion Graph (Guide)

LEY25

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
40			

LEY32

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]]
$\mathbf{2 5}{ }^{\circ} \mathbf{C}$ or less	85 or less	100	-
$\mathbf{4 0}{ }^{\circ} \mathbf{C}$	65 or less	100	-
	85	50	15

LEY40

| Ambient temperature | Set value of pushing force [\%] | Duty ratio [\%] | Continuous pushing time [minute] |
| :--- | :--- | :--- | :--- | $40^{\circ} \mathrm{C}$ or less 65 or less \qquad 100

Servo Motor (24 VDC)

LEY16

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
$40^{\circ} \mathrm{C}$ or less	95 or less	100	-

LEY25

Ambient temperature	Set value of pushing force $[\%]$	Duty ratio [\%]	Continuous pushing time [minute]			
$40^{\circ} \mathrm{C}$					$40^{\circ} \mathrm{C}$ or less	95 or less
:---	:---					

<Pushing Force and Trigger Level Range> Without Load

Model	Pushing speed [mm/s]	Pushing force (Setting input value)	Model	Pushing speed [mm/s]	Pushing force (Setting input value)
LEY16 \square	1 to 4	30% to 85%	LEY16■A	1 to 4	40 \% to 95%
	5 to 20	35% to 85%		5 to 20	60% to 95%
	21 to 50	60 \% to 85%		21 to 50	80% to 95%
LEY25 \square	1 to 4	20 \% to 65%	LEY25 \square A	1 to 4	40 \% to 95%
	5 to 20	35% to 65%		5 to 20	60 \% to 95%
	21 to 35	50 \% to 65%		21 to 35	80% to 95%
LEY32 \square	1 to 4	20 \% to 85%			
	5 to 20	35% to 85%			
	21 to 30	60 \% to 85%			
LEY40 \square	1 to 4	20 \% to 65%			
	5 to 20	35% to 65%			
	21 to 30	50 \% to 65%			

<Set values for vertical upward transfer pushing operation>
Note) For vertical loads (upward), set the pushing force to the maximum value shown below, and operate at the work load or less.

Model	LEY16口			LEY25 \square			LEY32 \square			LEY40			LEY16■A				LEY25■A		
Lead	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C		A	B	C
Work load [kg]	1	1.5	3	2.5	5	10	4.5	9	18	7	14	28	1	1.5	3		1.2	2.5	5
Pushing force	85 \%			65 \%			85 \%			65 \%			95 \%			95 \%			

Non-rotating Accuracy of Rod

Size	Non-rotating accuracy θ
16	$\pm 1.1^{\circ}$
25	$\pm 0.8^{\circ}$
32	$\pm 0.7^{\circ}$
40	

* Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.
This may cause deformation of the non-rotating guide, abnormal responses of the auto switch, play in the internal guide or an increase in the sliding resistance.

Speed-Work Load Graph (Guide) for Step Motor (Servo/24 VDC) LECP6, LECP1, JXCE1/91/P1/D1/L1

Horizontal

LEY25 \square
$\square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY32 \square
$\square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical

LEY25 \square

LEY32 \square

Graph of Allowable Lateral Load on the Rod End (Guide)

Rod Displacement: δ
[Stroke] $=$ [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Size	Stroke [mm]										
	30	50	100	150	200	250	300	350	400	450	500
16	± 0.4	± 0.5	± 0.9	± 0.8	± 1.1	± 1.3	± 1.5	-	-	-	-
25	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 0.5	-	-
32,40	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8

Speed-Work Load Graph (Guide)
For Step Motor (Servo/24 VDC) LECPA, JXC73/83/92/93

Horizontal

LEY32 \square

Vertical

LEY25 \square

LEY32 \square

For Servo Motor (24 VDC) LECA6

Series LEY-X5

Force Conversion Graph

Step Motor (Servo/24 VDC)

LEY25

Ambient temperature	Set value of pushing force* [\%]	Duty ratio [\%]	Continuous pushing time [minute]
$\mathbf{4 0}{ }^{\circ} \mathbf{C}$ or less	65 or less	100	-

LEY32

Ambient temperature	Set value of pushing force* [\%]	Duty ratio $[\%]$	Continuous pushing time [minute]
$\mathbf{2 5}{ }^{\circ} \mathbf{C}$ or less	$\mathbf{8 5}$ or less	100	-
$\mathbf{4 0}{ }^{\circ} \mathbf{C}$	65 or less	100	-
	85	50	15

Servo Motor (24 VDC)

LEY25

Ambient temperature	Set value of pushing force* [\%]	Duty ratio [\%]	Continuous pushing time [minute]
$\mathbf{4 0}{ }^{\circ} \mathbf{C}$ or less	95 or less	100	-

<Pushing Force and Trigger Level Range> Without Load

Model	Pushing speed [mm/s]	Pushing force (Setting input value)	Model	Pushing speed [mm/s]	Pushing force (Setting input value)
LEY25 \square	1 to 4	20 \% to 65%	LEY25 \square A	1 to 4	40% to 95%
	5 to 20	35% to 65%		5 to 20	60% to 95%
	21 to 35	50 \% to 65%		21 to 35	80% to 95%
LEY32 \square	1 to 4	20 \% to 85%			
	5 to 20	35% to 85%			
	21 to 30	60% to 85%			

<Set values for vertical upward transfer pushing operation>
Note) For vertical loads (upward), set the pushing force to the maximum value shown below, and operate at the work load or less.

Model	LEY25 \square			LEY32 \square			LEY25 \square A		
Lead	A	B	C	A	B	C	A	B	C
Work load [kg]	2.5	5	10	4.5	9	18	1.2	2.5	5
Pushing force	65 \%			85 \%			95 \%		

Specific Product Precautions	LECY \square	LECSS-T	LECS \square	AC Servo Motor		JXC73183929293	JXC $\square 1$	LECPA	LECP1	LEC-G	LECA6 LECP6	Servo Motor (24 VDC)/Step Motor (Senol24 VDC)		$\begin{aligned} & \text { Model } \\ & \text { Selection } \end{aligned}$
				LEYG	LEY							LEYG	LEY	

Electric Actuator/Rod Type

Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

Series LEY
 LEY16, 25, 32, 40

Multi-Axis Step Motor Controller Compatible Page 108
How to Order

3 Motor type

Symbol	Type	Size			Compatible
LEY16	LEY25	LEY3240	controleersdriver		

4 Lead [mm]

Symbol	LEY16	LEY25	LEY32/40
A	10	12	16
B	5	6	8
C	2.5	3	4

5 Stroke [mm]
$\mathbf{3 0}$
to
$\mathbf{5 0 0}$
to

* Refer to the applicable stroke table.

6 Motor option

-	Without option
\mathbf{C}	With motor cover
\mathbf{B}	With lock
\mathbf{W}	With lock and motor cover

Note) When "With lock" or "With lock and motor cover" is selected for the top mounting and right/left side parallel types, the motor body will stick out of the end of the body for size $16 / 40$ with strokes 30 or less. Check for interference with workpieces before selecting a model.

* Consult with SMC for non-standard strokes as they are produced as special orders.

* Applicable stroke table OStandard												
Model	30	50	100	150	200	250	300	350	400	450	500	Manufacturable stroke range [mm]
LEY16	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	10 to 300
LEY25	\bigcirc	-	-	15 to 400								
LEY32/40	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	20 to 500

\triangle Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LEY series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 73 for the noise filter set. Refer to the LECA Operation Manual for installation.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

*1 Mounting bracket is shipped together, (but not assembled).
*2 For horizontal cantilever mounting with the rod flange, head flange and ends tapped, use the actuator within the following stroke range.
-LEY25: 200 or less
-LEY32/40: 100 or less
*3 For mounting with the double clevis, use the actuator within the following stroke range.
-LEY16: 100 or less
-LEY25: 200 or less
-LEY32/40: 200 or less
*4 Rod flange is not available for the LEY16/40 with stroke 30 mm and motor option "With lock", "With lock/motor cover".
*5 Head flange is not available for the LEY32/40.
13 Controller/Driver mounting

-	Screw mounting
\mathbf{D}	DIN rail mounting ${ }^{* 1}$

*1 DIN rail is not included. Order it separately.

9) Actuator cable type ${ }^{* 1}$
-
S
W
R
Robothout cable cablard cable (Flexible cable) ${ }^{* 3}$

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2 Only available for the motor type "Step motor."
*3 Fix the motor cable protruding from the actuator to keep it unmovable. For details about fixing method, refer to Wiring/Cables in the Electric Actuators Precautions.

1 Controller/Driver type*1		
-	Without controller/driver	
6N	LECP6/LECA6	NPN
6P	(Step data input type)	PNP
1N	LECP1*2	NPN
1P	(Programless type)	PNP
AN	LECPA*2, *3	NPN
AP	(Pulse input type)	PNP

*1 For details about controller/drivers and compatible motors, refer to the compatible controller/drivers below.
*2 Only available for the motor type "Step motor."
*3 When pulse signals are open collector, order the current limiting resistor separately.
10 Actuator cable length [m]

-	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 5) on page 13.
12 $/ / 0$ cable length $[m]^{* 1}$, Communication plug

-	Without cable
$\mathbf{1}$	1.5
3	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

*1 When "Without controllers/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 73 (For LECP6/ LECA6), page 86 (For LECP1) or page 93 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

Compatible Controllers/Driver

Type	Step data input type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECA6	LECP1	LECPA
Features	Value (Step data) input Standard controller		Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points		14 points	-
Power supply voltage	24 VDC			
Reference page	Page 65	Page 65	Page 80	Page 87

Specifications

Step Motor (Servo/24 VDC)

Model				LEY16			LEY25			LEY32			LEY40		
Stroke [mm] ${ }^{\text {Note 1) }}$				$\begin{gathered} 30,50,100,150 \\ 200,250,300 \\ \hline \end{gathered}$			$\begin{gathered} \hline 30,50,100,150,200 \\ 250,300,350,400 \\ \hline \end{gathered}$			$\begin{gathered} \hline 30,50,100,150,200,250 \\ 300,350,400,450,500 \\ \hline \end{gathered}$			$\begin{gathered} \hline 30,50,100,150,200,250 \\ 300,350,400,450,500 \\ \hline \end{gathered}$		
	Work load [kg] Note 2)	Horizontal (LECP6, LECP1, JXC $\square 1$	(3000 [mm/s²])	6	17	30	20	40	60	30	45	60	50	60	80
			(2000[mm/s²])	10	23	35	30	55	70	40	60	80	60	70	90
		Horizontal (LECPA, JXC $\square 3$)	$\left(3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]\right)$	4	11	20	12	30	30	20	40	40	30	60	60
$\stackrel{\square}{0}$			(2000 [mm/s²])	6	17	30	18	50	50	30	60	60	-	-	-
		Vertical	($3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$)	2	4	8	8	16	30	11	22	43	13	27	53
$\stackrel{\circ}{0}$	Pushing force [${ }^{\text {d }}$ Note 3) 4) 5)			14 to 38	27 to 74	51 to 141	63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
¢	$\begin{aligned} & \text { Speed } \\ & {[\mathrm{mm} / \mathrm{s}]^{\text {Note } 5)}} \end{aligned}$	LECP	6/LECP1	15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125	24 to 500	12 to 300	6 to 150	24 to 500	12 to 350	6 to 175
$\stackrel{0}{\mathbf{n}}$			ECPA								12 to 250	6 to 125	24 to 300	12 to 150	6 to 75
哭	Max. acceleration/deceleration [mm/s²]			3000											
	Pushing speed [mm/s] ${ }^{\text {Note } 6)}$			50 or less			35 or less			30 or less			30 or less		
	Positioning repeatability [mm]			± 0.02											
	Lost motion [mm] ${ }^{\text {Note } 7 \text { 7 }}$			0.1 or less											
	Screw lead [mm]			10	5	2.5	12	6	3	16	8	4	16	8	4
	ImpactVibration resistance [m/s ${ }^{2}$] ${ }^{\text {Note }}$ 8)			50/20											
	Actuation type			Ball screw + Belt (LEY \square)/Ball screw (LEY $\square \mathrm{D}$)											
	Guide type			Sliding bushing (Piston rod)											
	Operating humidity range [\%RH]			5 to 40											
				90 or less (No condensation)											
Ш	Motor size			$\square 28$			$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Step motor (Servo/24 VDC)											
	Encoder			Incremental A/B phase (800 pulse/rotation)											
	Rated voltage [V]			24 VDC ± 10 \%											
	Power consumption [W] ${ }^{\text {Note } 9)}$			23			40			50			50		
	Standby power consumption when operating [WW [Ve ${ }^{\text {Io }}$			16			15			48			48		
	Max. instantineous power consumption [W] Wde it]			43			48			104			106		
\checkmark	Type ${ }^{\text {Note 12) }}$			Non-magnetizing lock											
	Holding force [N]			20	39	78	78	157	294	108	216	421	127	265	519
	Power consumption [W] Note 13)			2.9			5			5			5		
	Rated voltage [V]			24 VDC ± 10 \%											

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Horizontal: The maximum value of the work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load and transfer speed change according to the condition of the external guide. Also, speed changes according to the work load. Check "Model Selection" on pages 5 and 6.
Vertical: Speed changes according to the work load. Check "Model Selection" on pages 5 and 6.
The values shown in () are the acceleration/deceleration.
Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less.
Note 3) Pushing force accuracy is ± 20 \% (F.S.).
Note 4) The pushing force values for LEY16 \square is 35% to 85%, for LEY25 \square is 35% to 65%, for LEY32 \square is 35% to 85% and for LEY40 \square is 35% to 65%. The pushing force values change according to the duty ratio and pushing speed. Check "Model Selection" on page 8.
Note 5) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 6) The allowable speed for pushing operation. When push conveying a workpiece, operate at the vertical work load or less.
Note 7) A reference value for correcting an error in reciprocal operation.
Note 8) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 9) The power consumption (including the controller) is for when the actuator is operating.
Note 10) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation.
Note 11) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 12) With lock only
Note 13) For an actuator with lock, add the power consumption for the lock.

Specifications

Servo Motor（24 VDC）

Model		LEY16A			LEY25A		
	Stroke［mm］Note 1）	$\begin{gathered} 30,50,100,150 \\ 200,250,300 \end{gathered}$			$\begin{gathered} 30,50,100,150,200 \\ 250,300,350,400 \\ \hline \end{gathered}$		
	Work load Hrizatal（ $\left.3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]\right)$	3	6	12	7	15	30
	［kg］${ }^{\text {Note 2）}}$ Vericical（ $\left.3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]\right)$	2	4	8	3	6	12
	Pushing force［N］Note 3）4）	16 to 30	30 to 58	57 to 111	18 to 35	37 to 72	66 to 130
	Speed［mm／s］	1 to 500	1 to 250	1 to 125	2 to 500	1 to 250	1 to 125
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］	3000					
	Pushing speed［mm／s］${ }^{\text {Note 5）}}$	50 or less			35 or less		
	Positioning repeatability［mm］	± 0.02					
	Lost motion［mm］Note 6）	0.1 or less					
	Screw lead［mm］	10	5	2.5	12	6	3
	ImpactVibration resistance［m／s $\mathrm{s}^{\text {Nobeit }}$（	50／20					
	Actuation type	Ball screw＋Belt（LEY \square ）／Ball screw（LEY $\square \mathrm{D}$ ）					
	Guide type	Sliding bushing（Piston rod）					
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］	5 to 40					
	Operating humidity range［\％RH］	90 or less（No condensation）					
$\stackrel{\square}{\square}$	Motor size	$\square 28$			$\square 42$		
．	Motor output［W］	30			36		
可	Motor type	Servo motor（24 VDC）					
－	Encoder	Incremental A／B phase（800 pulse／rotation）／Z phase					
\％	Rated voltage［V］	24 VDC ± 10 \％					
．	Power consumption［W］${ }^{\text {Note } 8)}$	40			86		
U	Standly povere consumption whenopeating［W］was）	4 （Horizontal）／6（Vertical）			4 （Horizontal）／12（Vertical）		
Ш	Max，instantaneous pover consumption（W）Wdet 10	59			96		
－	Type Note 11）	Non－magnetizing lock					
方	Holding force［N］	20	39	78	78	157	294
皆：	Power consumption［W］Note 12）	2.9			5		
	Rated voltage［V］	24 VDC ± 10 \％					

Note 1）Consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）Horizontal：The maximum value of the work load．An external guide is necessary to support the load．The actual work load and transfer speed change according to the condition of the external guide．
Vertical：Check＂Model Selection＂on page 7 for details． The values shown in（ ）are the acceleration／deceleration． Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less．
Note 3）Pushing force accuracy is $\pm 20 \%$（F．S．）
Note 4）The pushing force values for LEY16A \square is 50% to 95% and for LEY25A \square is 50% to 95% ．The pushing force values change according to the duty ratio and pushing speed．Check＂Model Selection＂on page 8.
Note 5）The allowable speed for pushing operation．When push conveying a workpiece，operate at the vertical work load or ess．
Note 6）A reference value for correcting an error in reciprocal operation． Note 7）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 8）The power consumption（including the controller）is for when the actuator is operating．
Note 9）The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during the operation．Except during the pushing operation．
Note 10）The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．
Note 11）With lock only
Note 12）For an actuator with lock，add the power consumption for the lock．

Weight

Weight：Motor Top／Parallel Type

Series		LEY16							LEY25									LEY32										
Stroke［mm］		30	50	100	150	200	250	300	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight［kg］	Step motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.18	1.25	1.42	1.68	1.86	2.03	2.21	2.38	2.56	2.09	2.20	2.49	2.77	3.17	3.46	3.74	4.03	4.32	4.60	4.89
	Servo motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.14	1.21	1.38	1.64	1.82	1.99	2.17	2.34	2.52	－	－	－	－	－	－	－	－	－	－	－
Series		LEY40																										
Stroke［mm］		30	50	100	150	200	250	300	350	400	450	500																
Product weight［kg］	Step motor	2.39	2.50	2.79	3.07	3.47	3.76	4.04	4.33	4.62	4.90	5.19																
	Servo motor	－	－	－	－	－	－	－	－	－	－	－																

Weight：In－line Motor Type

Series		LEY16D							LEY25D									LEY32D										
Stroke［mm］		30	50	100	150	200	250	300	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight［kg］	Step motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.17	1.24	1.41	1.67	1.85	2.02	2.20	2.37	2.55	2.08	2.19	2.48	2.76	3.16	3.45	3.73	4.02	4.31	4.59	4.88
	Servo motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.13	1.20	1.37	1.63	1.81	1.98	2.16	2.33	2.51	－	－	－	－	－	－	－	－	－	－	－
Series		LEY40D																										
Stroke［mm］		30	50	100	150	200	250	300	350	400	450	500																
Product weight［kg］	Step motor	2.38	2.49	2.78	3.06	3.46	3.75	4.03	4.32	4.61	4.89	5.18																
	Servo motor	－	－	－	－	－	－	－	－	－	－	－																

Additional Weight

Size		16	25	32	40					
Lock	0.12	0.26	0.53	0.53						
Motor cover	0.02	0.03	0.04	0.05						
Rod end male thread	Male thread	0.01	0.03	0.03	0.03					
	Nut	0.01	0.02	0.02	0.02					
Foot（2 sets including mounting bolt）	0.06	0.08	0.14	0.14						
Rod flange（including mounting bolt）							0.13	0.17	0.20	0.20
Head flange（including mounting bolt）										
Double clevis（including pin，retaining ring and mounting bolt）	0.08	0.16	0.22	0.22						

Step Motor (Servo/24 VDC)

Construction

Motor top mounting type: LEY $\begin{array}{r}16 \\ 25 \\ 32 \\ 40\end{array}$

Motor top/parallel type With lock/motor cover

Construction

In-line motor type: $\operatorname{LEY}_{32} \stackrel{16}{25} \mathrm{D}$

In-line motor type: With lock/motor cover

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminium alloy	Anodised
$\mathbf{2}$	Ball screw (shaft)	Alloy steel	
$\mathbf{3}$	Ball screw nut	Resin/Alloy steel	
4	Piston	Aluminium alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminium alloy	
7	Housing	Aluminium alloy	
8	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Lead bronze cast	
12	Bumper	Urethane	
13	Bearing	-	
14	Return box	Aluminium die-cast	Coating
15	Return plate	Aluminium die-cast	Coating
16	Magnet	-	
17	Wear ring holder	Stainless steel	Stroke 101 mm or more
18	Wear ring	POM	Stroke 101 mm or more
19	Screw shaft pulley	Aluminium alloy	
20	Motor pulley	Aluminium alloy	
21	Belt	-	
22	Bearing stopper	Aluminium alloy	
23	Parallel pin	Stainless steel	
24	Seal	NBR	
25	Retaining ring	Steel for spring	Phosphate coated

Replacement Parts (Top/Parallel only)/Belt

No.	Size	Order no.
21	16	LE-D-2-1
	$\mathbf{2 5}$	LE-D-2-2
	$\mathbf{3 2 , 4 0}$	LE-D-2-3

\section*{Replacement Parts/Grease Pack
 | Applied portion | Order no. |
| :---: | :---: |
| Piston rod | GR-S-010 $(10 \mathrm{~g})$ |
| | GR-S-020 $(20 \mathrm{~g})$ |}

* Apply grease on the piston rod periodically.

Grease should be applied at 1 million cycles or 200 km , whichever comes first.

Note 1) Range within which the rod can move when it returns to origin. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod. Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

Size	Stroke	A	B	C	D	EH	EV	H	J	K	L	M	O	R	S	T	U	V	Step	motor	Servo	motor	Y
	range [mm]	A	B					H			L	M	O_{1}						W	X	W	X	
16	10 to 100	101	90.5	10	16	34	34.3	M5 x 0.8	18	14	10.5	25.5	M4 x 0.7	7	35	67.5	0.5	28	61.8	80.3	62.5	81	22.5
	101 to 300	121	110.5																				
25	15 to 100	130.5	116	13	20	44	45.5	M8 x 1.25	24	17	14.5	34	M5 x 0.8	8	46	92	1	42	63.4	85.4	59.6	81.6	26.5
	101 to 400	155.5	141																				
32	20 to 100	148.5	130	13	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6x 1.0	10	60	118	1	56.4	68.4	95.4	-	-	34
	101 to 500	178.5	160																				
40	20 to 100	148.5	130	13	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6 x 1.0	10	60	118	1	56.4	90.4	117.4	-	-	34
	101 to 500	178.5	160																				

Body Bottom Tapped

Body Bottom Tapped [mm]											
Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
16	10 to 39	15	35.5	17	23.5	23	40	M4 x 0.7	5.5	3	4
	40 to 100			32	31						
	101 to 300			62	46		60				
25	15 to 39	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100			42	41						
	101 to 124						75				
	125 to 200			59	49.5						
	201 to 400			76	58						
	20 to 39	25	55	22	36	30	50	M6 $\times 1$	8.5	5	6
	40 to 100			36	43						
	101 to 124			36	43		80				
	125 to 200			53	51.5						
	201 to 500			70	60						

Step Motor (Servo/24 VDC)
Servo Motor (24 VDC)

Dimensions: Motor Top/Parallel

Motor left side parallel type: $\operatorname{LEY}_{32}{ }_{40}^{25} \mathrm{~L}$

Motor right side parallel type: $\operatorname{LEY}_{32}{ }_{40}^{16} R$

	$[\mathrm{mm}]$		
Size	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$	\mathbf{U}
$\mathbf{1 6}$	35.5	67	0.5
$\mathbf{2 5}$	47	91	1
$\mathbf{3 2 , 4 0}$	61	117	$\mathbf{1}$

Note) When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

Dimensions: In-line Motor

Note 1) Range within which the rod can move when it returns to origin. Make sure a workpiece
mounted on the rod does not interfere with the workpieces and facilities around the rod. Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) The direction of rod end width across flats $(\square \mathrm{K})$ differs depending on the products.

Size	Stroke range [mm]	Step motor	Servo motor	B	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U	V	Step motor	Servo motor	Y
16	10 to 100	166.3	167	92	10	16	34	34.3	M5 x 0.8	18	14	10.5	25.5	M4 x 0.7	7	35	35.5	0.5	28	61.8	62.5	24
	101 to 300	186.3	187	112																		
25	15 to 100	195.4	191.6	115.5	13	20	44	45.5	M8 x 1.25	24	17	14.5	34	M5 x 0.8	8	45	46.5	1.5	42	63.4	59.6	26
	101 to 400	220.4	216.6	140.5																		
32	20 to 100	216.9	-	128	13	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6 x 1	10	60	61	1	56.4	68.4	-	32
	101 to 500	246.9	-	158																		
40	20 to 100	238.9	-	128	13	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6 x 1	10	60	61	1	56.4	90.4		32
	101 to 500	268.9	-	158																		

Body Bottom Tapped

Size	Stroke range $[\mathrm{mm}]$	MA	MC	MD	MH	ML	MO	MR	XA	XB
16	10 to 39	15	17	23.5	23		M4 x 0.7	5.5	3	4
	40 to 100		32	31		40				
	101 to 300		62	46		60				
25	15 to 39	20	24	32	29		M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	101 to 124		42	41		75				
	125 to 200		59	49.5						
	201 to 400		76	58						
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	20 to 39	25	22	36	30	50	M6x 1	8.5	5	6
	40 to 100		36	43		50				
	101 to 124		36	43		80				
	125 to 200		53	51.5						
	201 to 500		70	60						

Dimensions

Connector

Size	\mathbf{T}_{2}	\mathbf{X}_{2}
$\mathbf{1 6}$	7.5	83
$\mathbf{2 5}$	7.5	88.5
$\mathbf{3 2}$	7.5	98.5
$\mathbf{4 0}$	7.5	120.5

Motor cover material: Synthetic resin

End male thread: $\operatorname{LEY}_{32} \begin{array}{ll}16 \\ 40 \\ 40 \\ \square & \mathrm{~B} \\ \mathrm{C}\end{array}$

				Refer to page 25 for details about the rod end nut and mounting bracket. Note) Refer to the "Handling" precautions on pages 59 to 60 when mounting end brackets such as knuckle joint or workpieces.			
Size	B_{1}	C1	H_{1}	L1	L2	MM	* The L1 measurement is when the unit is in the original position. At this position, 2 mm at the end.
16	13	12	5	24.5	14	M8 $\times 1.25$	
25	22	20.5	8	38	23.5	M14 $\times 1.5$	
32, 40	22	20.5	8	42.0	23.5	M14 $\times 1.5$	

[mm]

Size	Stroke range	Step motor Servo motor		Step motor Servo motor	
		A		VB	
16	100st or less	207.8	208.5	103.3	104
	101st or more, 200st or less	227.8	228.5		
25	100st or less	235.9	232.1	103.9	100.1
	101st or more, 400st or less	260.9	257.1		
32	100st or less	259.9	-	111.4	-
	101st or more, 500st or less	289.9	-		
40	100st or less	281.9	-	133.4	-
	101st or more, 500st or less	311.9	-		

Series LEY

Step Motor (Servo/24 VDC)

Dimensions

Size	\mathbf{T}_{2}	$\mathbf{X m m}_{2}$
$\mathbf{1 6}$	7.5	124.5
$\mathbf{2 5}$	7.5	129
$\mathbf{3 2}$	7.5	141.5
$\mathbf{4 0}$	7.5	163.5

Outward mounting

Foot					Included parts - Foot - Body mounting bolt			
					[mm]			
Size	Stroke range [mm]	A	LS		LS 1	LL	LD	LG
16	10 to 100	106.1		76.7	16.1	5.4	6.6	2.8
	101 to 300	126.1		96.7				
25	15 to 100	136.6		98.8	19.8	8.4	6.6	3.5
25	101 to 400	161.6		123.8				
32	20 to 100	155.7		114	19.2	11.3	6.6	4
40	101 to 500	185.7		144				
Size	Stroke range [mm]	LH	LT	LX	LY	LZ	X	Y
16	10 to 100	24	2.3	48	40.3	62	9.2	5.8
	101 to 300							
25	15 to 100	30	2.6	57	51.5	71	11.2	5.8
	101 to 400							
32	20 to 100	36	3.2	76	61.5	90	11.2	7
40	101 to 500							

Material: Carbon steel (Chromate treated)

* The A measurement is when the unit is in the original position.

At this position, 2 mm at the end.
Note) When the motor mounting is the right or left side parallel type, the head side foot should be mounted outwards.

Rod flange: LEY16

25 A
Rod flange: LEY32 $\square \square \mathrm{C}$

25 A
Double clevis: LEY32 $\square \square B-\square \square \square D$

Head flange: LEY16
A

$\stackrel{\text { B }}{\mathrm{C}}$ C

A
Head flange: LEY25

C

Head flange is not available for the LEY32/40.

Included parts
- Flange
- Body mounting bolt

- Body mounting bolt

Rod/Head Flange

Size	FD	FT	FV	FX	FZ	LL	M
$\mathbf{1 6}$	6.6	8	39	48	60	2.5	-
$\mathbf{2 5}$	5.5	8	48	56	65	6.5	34
$\mathbf{3 2 , 4 0}$	5.5	8	54	62	72	10.5	40

Material: Carbon steel (Nickel plated)

- Double clevis
- Body mounting bolt
- Clevis pin
- Retaining ring
* Refer to page 25 for details about the rod end nut and mounting bracket.
Double Clevis

Size	Stroke range $[\mathrm{mm}]$	A	CL	CB	CD	CT
$\mathbf{1 6}$	10 to 100	128	119	20	8	5
$\mathbf{2 5}$	10 to 100	160.5	150.5		10	5
	101 to 200	185.5	175.5			5
$\mathbf{3 2}$	10 to 100	180.5	170.5		10	6
$\mathbf{4 0}$	101 to 200	210.5	200.5			

Size	Stroke range $[\mathrm{mm}]$	CU	CW	$\mathbf{C X}$	$\mathbf{C Z}$	\mathbf{L}	$\mathbf{R R}$
$\mathbf{1 6}$	10 to 100	12	18	8	16	10.5	9
$\mathbf{2 5}$	$\frac{10 \text { to } 100}{}$	14	20	18	36	14.5	10
	101 to 200						
$\mathbf{3 2}$	10 to 100	14	22	18	36	18.5	10
	101 to 200						

Material: Cast iron (Coating)

* The A and CL measurements are when the unit is in the original position. At this position, 2 mm at the end.

Series LEY
 Accessory Mounting Brackets

Accessory Brackets/Support Brackets

Single Knuckle Joint

* If a knuckle joint is used, select the body option [end male thread].

Material: Carbon steel Surface treatment: Nickel plated

I-G04

Material: Cast iron
Surface treatment: Nickel plated

$[\mathbf{1 0}$										
Part no.	Applicable size	\mathbf{A}	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{E}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{1}}$	$\mathbf{M M}$	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{U}_{\mathbf{1}}$	$\mathbf{N D}_{\mathbf{H 1 0}}$	$\mathbf{N X}$
I-G02	$\mathbf{1 6}$	34	8.5	$\square 16$	25	M8 $\times 1.25$	10.3	11.5	$8_{0}^{+0.058}$	$8_{-0.4}^{-0.2}$
I-G04	$25,32,40$	42	14	$\varnothing 22$	30	M14 $\times 1.5$	12	14	$10_{0}^{+0.058}$	$18_{-0.5}^{-0.3}$
I-G05	63	56	18	$\varnothing 28$	40	M18 $\times 1.5$	16	20	$14_{0}^{+0.058}$	$22_{-0.5}^{-0.3}$

Knuckle Pin (Common with double clevis pin)

Material: Carbon steel [mm]

Part no.	Applicable size	$\mathbf{D d 9}$	$\mathbf{L}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{2}}$	\mathbf{d}	\mathbf{m}	\mathbf{t}	Retaining ring
IY-G02	$\mathbf{1 6}$	$8_{-0.076}^{-0.040}$	21	16.2	7.6	1.5	0.9	Type C retaining ing 8
IY-G04	$\mathbf{2 5 , 3 2 , 4 0}$	$10_{-0.076}^{-0.040}$	41.6	36.2	9.6	1.55	1.15	Type C retaring ting 10

Mounting Brackets/Part No.

Applicable size	Foot	Flange	Double clevis
$\mathbf{1 6}$	LEY-L016	LEY-F016	LEY-D016
$\mathbf{2 5}$	LEY-L025	LEY-F025	LEY-D025
$\mathbf{3 2 , 4 0}$	LEY-L032	LEY-F032	LEY-D032
$\mathbf{6 3}$	LEY-L063	LEY-F063	LEY-D063

* When ordering foot brackets, order 2 pieces per cylinder.
* Parts belonging to each bracket are as follows.

Foot: Body mounting bolt
Flange: Body mounting bolt
Double clevis: Clevis pin, Type C retaining ring for axis, Body mounting bolt

Double Knuckle Joint

Material: Carbon steel
Surface treatment: Nickel plated
Material: Cast iron
Surface treatment: Nickel plated

| * Knuckle pin and retaining ring are included. | $[\mathrm{mm}]$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Part no. | Applicable
 size | \mathbf{A} | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{E}_{\mathbf{1}}$ | $\mathbf{L}_{\mathbf{1}}$ | $\mathbf{M M}$ | $\mathbf{R}_{\mathbf{1}}$ |
| Y-G02 | $\mathbf{1 6}$ | 34 | 8.5 | $\square 16$ | 25 | M8 $\times 1.25$ | 10.3 |
| Y-G04 | $\mathbf{2 5 , 3 2 , 4 0}$ | 42 | 16 | $\varnothing 22$ | 30 | M14 $\mathbf{3} 1.5$ | 12 |
| Y-G05 | $\mathbf{6 3}$ | 56 | 20 | $\varnothing 28$ | 40 | M18 1.5 | 16 |

Part no.	Applicable size	\mathbf{U}_{1}	$\mathbf{N D}_{\text {H10 }}$	$\mathbf{N X}$	$\mathbf{N Z}$	\mathbf{L}	Applicable pin part no.
Y-G02	$\mathbf{1 6}$	11.5	$8^{+0.058}$	$8_{+0.2}^{+0.4}$	16	21	IY-G02
Y-G04	$\mathbf{2 5 , 3 2 , 4 0}$	14	$10_{0}^{+0.058}$	$18_{+0.3}^{+0.5}$	36	41.6	IY-G04
Y-G05	$\mathbf{6 3}$	20	$14_{0}^{+0.058}$	$22_{+0.3}^{+0.5}$	44	50.6	IY-G05

Rod End Nut

Material: Carbon steel (Nickel plated)
[mm]

Part no.	Applicable size	\mathbf{d}	\mathbf{H}	\mathbf{B}	\mathbf{C}
NT-02	$\mathbf{1 6}$	$\mathrm{M} 8 \times 1.25$	5	13	15.0
NT-04	$\mathbf{2 5 , 3 2 , 4 0}$	$\mathrm{M} 14 \times 1.5$	8	22	25.4
NT-05	$\mathbf{6 3}$	$\mathrm{M} 18 \times 1.5$	11	27	31.2

Accessory Mounting Brackets Series LEY

位

Simple Joint Brackets
 * The joint is not included in type A and type B mounting brackets. Therefore, it must be ordered separately.

Joint and Mounting Bracket (Type A/B)/Part No.

Joint and Mounting Bracket (Type A/B)/Part No.

Applicable siz		Joint part no.		pplicable mounting bracket part no.								
				Type A mounting bracket			Type B mounting bracket					
25, 32, 40		LEY-U025		YA-03			B-03					
Joint												
Part no.	Applicable size	UA	C	d_{1}	d2	H	K	L	UT	Weight [g]		
LEY-U025	25, 32, 40	17	11	16	8	M8 x 1.25	14	7	6	22		

Floating Joints (Refer to Best Pneumatics No. 2 for details.)

-For Male Thread/JA

-For Male Thread/JS (Stainless steel)

- Stainless steel 304
(Appearance)
- Dust cover

Fluororubber/Silicone rubber

Material: Chromium molybdenum steel (Nickel plated)									
Part no.	$\begin{array}{c}\text { Applicable } \\ \text { size }\end{array}$	\mathbf{B}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{M}	$\mathbf{T}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$	\mathbf{U}
YA-03	$\mathbf{2 5 , 3 2 , 4 0}$	18	6.8	16	6	42	6.5	10	6

Material: Chromium molybdenum steel (Nickel plated)									
Part no.	Applicable size	B	D	E	F	\mathbf{M}	$\mathbf{T}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$	\mathbf{U}
YA-03	$\mathbf{2 5 , 3 2 , 4 0}$	18	6.8	16	6	42	6.5	10	6

Part no.	Applicable size	V	\mathbf{W}	Weight $[\mathrm{g}]$
YA-03	$\mathbf{2 5}, \mathbf{3 2}, \mathbf{4 0}$	18	56	55

Solid State Auto Switch Direct Mounting Style
 D-M9N(V)/D-M9P(V)/D-M9B(V)

RoHS

Refer to SMC website for details about products conforming to the international standards.

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications
PLC: Programmable Logic Controller
D-M9 \square, D-M9 \square V (With indicator light)

Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at $10 \mathrm{~mA}(2 \mathrm{~V}$ or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED lights up when turned ON.					
Standards	CE marking, RoHS					

- Lead wires - Oilproof flexible heavy-duty vinyl cord: $\varnothing 2.7 \times 3.2$ ellipse, $0.15 \mathrm{~mm}^{2}$,

2 cores ($\mathrm{D}-\mathrm{M9B}(\mathrm{~V}$)), 3 cores ($\mathrm{D}-\mathrm{M9N}(\mathrm{~V}) / \mathrm{D}-\mathrm{M9P}(\mathrm{~V})$)
Note) Refer to Best Pneumatics No. 2 for solid state auto switch common specifications.

Weight

[g]

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length $[\mathrm{m}]$	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

How to Order

Dimensions
D-M9■

D-M9 \square V

2-Colour Indication Solid State Auto Switch

 Direct Mounting StyleD-M9NW(V)/D-M9PW(V)/D-M9BW(V) RoHs

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.
- The optimum operating range can be determined by the colour of the light. (Red \rightarrow Green \leftarrow Red)

© Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit

D-M9NW/M9NWV

D-M9PW/M9PWV

D-M9BW/M9BWV

Indicator light/Indication method

Refer to SMC website for details about products conforming to the international standards.

PLC: Programmable Logic Controller
D-M9 \square W, D-M9 \square WV (With indicator light)

Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less			24 VDC	o 28 VDC)
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range Red LED lights up. Optimum operating range Green LED lights up.					
Standards	CE marking, RoHS					

Lead wires - Oilproof flexible heavy-duty vinyl cord: $\varnothing 2.7 \times 3.2$ ellipse, $0.15 \mathrm{~mm}^{2}$, 2 cores (D-M9BW(V)), 3 cores (D-M9NW(V), D-M9PW(V))
Note) Refer to Best Pneumatics No. 2 for solid state auto switch common specifications.

Weight
[g]

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Lead wire length $[\mathrm{m}]$	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

How to Order

Dimensions

[mm]
D-M9■W

Normally Closed Solid State Auto Switch Direct Mounting Type

RoHS

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to SMC website for the details of the products conforming to the international standards.

PLC: Programmable Logic Controller

| D-M9 \square E, D-M9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

Oilproof Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Minimum bending radius $[\mathrm{mm}]$ (Reference values)				

Note 1) Refer to the Best Pneumatics No. 2 for solid state auto switch common specifications. Note 2) Refer to the Best Pneumatics No. 2 for lead wire lengths

Weight

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Lead wire length	$0.5 \mathrm{~m}(-)$	8	7	
	$1 \mathrm{~m}(\mathbf{M})^{*}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})^{*}$	68	63	

* The 1 m and 5 m options are produced upon receipt of order.

Dimensions

D-M9■E

D-M9 $\square E V$

Electric Actuator/Rod Type

* Produced upon receipt of order. Refer to the specifications Note 5) on page 7.

11 Controller/Driver type		
-	Without controller/driver	
6N	LECP6/LECA6 (Step data input type)	NPN
6P		PNP
1N*	LECP1 (Programless type)	NPN
1P*		PNP
AN*	LECPA (Pulse input type)	NPN
AP*		PNP
* Only available for the motor type "Step motor".		
13 Controller/Driver mounting		
-	Screw mounting*	
D	DIN rail mounting*	

(8) Mounting ${ }^{* 1}$

Symbol	Type	Motor mounting position	
		Top mounting	In-line
-	Ends tapped (Standard)*2	\bigcirc	\bigcirc
L	Foot	\bigcirc	-
F	Rod flange*2	*3	\bigcirc
G	Head flange*2	-*4	-

*1 Mounting bracket is shipped together, (but not assembled).
*2 For horizontal cantilever mounting with the rod flange, head flange and ends tapped, use the actuator within the following stroke range. -LEY25: 200 or less -LEY32: 100 or less *3 Rod flange is not available for the LEY25/32 with stroke 50 mm or less and motor option "With lock". *4 Head flange is not available for the LEY32.
12 I/O cable length [m] ${ }^{* 1}$

-	Without cable
$\mathbf{1}$	1.5
3	$3^{* 2}$
5	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 73 (For LECP6/ LECA6), page 86 (For LECP1) or page 93 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

Applicable stroke table
-Standard

Stroke Model	30	50	100	150	200	250	300	350	400	450	500	Manufacturable stroke range [mm]
LEY25	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	15 to 400
LEY32	\bigcirc	-	\bigcirc	-	\bigcirc	20 to 500						

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEY series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 73 for the noise filter set. Refer to the LECA Operation Manual for installation. [UL-compliant products] When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

* For auto switches, refer to page 36.
* "-X5" is not added to an actuator model with a controller/driver part number suffix.
Example) "LEY25DB-100" for the
LEY25DB-100BMU-P16NID-X5
* Consult with SMC for non-standard strokes as they are produced as special orders.

The actuator and controller/driver are sold as a package. (Controller/Driver \rightarrow Page 64)

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^1]
Specifications

Model					LEY25			LEY32		
	Stroke [mm] Note 1)				$\begin{gathered} 30,50,100,150,200 \\ 250,300,350,400 \end{gathered}$			$\begin{gathered} 30,50,100,150,200 \\ 250,300,350,400,450,500 \end{gathered}$		
	Work load [kg] Note 2)		For LECP6 LECP1 JXC $\square 1$ For LECPA JXC $\square 3$	(3000 [mm/s ${ }^{2} \mathrm{l}$)	20	40	60	30	45	60
				(2000 [mm/s $\left.{ }^{2}\right]$)	30	60	70	40	60	80
				(3000 [$\left.\mathrm{mm} / \mathrm{s}^{2}\right]$)	12	30	30	20	40	40
				(2000 [mm/s $\left.{ }^{2}\right]$)	18	50	50	30	60	60
			tical Note 15)	(3000 [mm/s $\left.{ }^{2}\right]$)	7	15	29	10	21	42
	Pushing force [N] Note 3) Note 4) Note 5)				63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707
	Speed [mm/s] ${ }^{\text {Note 5) }}$				18 to 400	9 to 200	5 to 100	24 to 400	12 to 200	6 to 100
	Max. acceleration/deceleration [mm/s ${ }^{2}$]				3000					
	Pushing speed [mm/s] ${ }^{\text {Note 6) }}$				35 or less			30 or less		
	Positioning repeatability [mm]				± 0.02					
	Lost motion [mm] ${ }^{\text {Note 7) }}$				0.1 or less					
	Screw lead [mm]				12	6	3	16	8	4
	Impact/Vibration resistance [m/s ${ }^{2}$] Note 8)				50/20					
	Actuation type				Ball screw + Belt (LEY \square) Ball screw (LEY $\square \mathrm{D}$)					
	Guide type				Sliding bushing (Piston rod)					
	Enclosure ${ }^{\text {Note 9) }}$				IP65 equivalent					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]				5 to 40					
	Operating humidity range [\%RH]				90 or less (No condensation)					
$\stackrel{\square}{\square}$	Motor size				$\square 42$			$\square 56.4$		
$\frac{\overline{0}}{\hat{0}}$	Motor type				Step motor (Servo/24 VDC)					
:	Encoder				Incremental A/B phase (800 pulse/rotation)					
응	Rated voltage [V]				24 VDC $\pm 10 \%$					
-	Power consumption [W] Note 10)				40			50		
㠵	Standby power consumption when operating [W] ${ }^{\text {Note 11) }}$				15			48		
㐫	Max. instantaneous power consumption [W] Note 12)				48			104		
$\stackrel{9}{5}$	Type Note 13)				Non-magnetizing lock					
	Holding force [N]				78	157	294	108	216	421
	Power consumption [W] Note 14)				5			5		
	Rated voltage [V]				24 VDC ± 10 \%					

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Horizontal: The maximum value of the work load. An external guide is necessary to support the load. (Friction coefficient of guide: 0.1 or less) The actual work load and transfer speed change according to the condition of the external guide. Also, speed changes according to the work load. Check "Model Selection" on page 9.
Vertical: Speed changes according to the work load. Check "Model Selection" on page 9.
The values shown in () are the acceleration/deceleration. Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less.
Note 3) Pushing force accuracy is ± 20 \% (F.S.).
Note 4) The pushing force values for LEY25 \square is 35% to 65% and for LEY32 \square is 35% to 85%. The pushing force values change according to the duty ratio and pushing speed. Check "Model Selection" on page 10.
Note 5) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 6) The allowable speed for pushing operation. When push conveying a workpiece, operate at the vertical work load or less.
Note 7) A reference value for correcting an error in reciprocal operation.
Note 8) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 9) Cannot be used in an environment where oil such as cutting oil splashes or it is constantly exposed to water. Take suitable protective measures. .
Note 10) The power consumption (including the controller) is for when the actuator is operating.
Note 11) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation.
Note 12) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 13) With lock only
Note 14) For an actuator with lock, add the power consumption for the lock.
Note 15) When mounting vertically and using the product facing upwards in an environment where water is present, take necessary measures to prevent water from splashing on the rod cover, because water will accumulate on the rod seal due to the structure of the product.

Specifications

Servo Motor (24 VDC)						
Model				LEY25A		
Stroke [mm] Note 1)				$\begin{gathered} 30,50,100,150,200 \\ 250,300,350,400 \end{gathered}$		
	Work load [kg] Note 2)	Horizontal	($3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$)	7	15	30
		Vertical Note 14)	(3000 [mm/s $\left.{ }^{2}\right]$)	2	5	11
	Pushing force [N] Note 3) Note 4)			18 to 35	37 to 72	66 to 130
	Speed [mm/s]			2 to 400	1 to 200	1 to 100
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			3000		
	Pushing speed [mm/s] ${ }^{\text {Note 5) }}$			35 or less		
	Positioning repeatability [mm]			± 0.02		
	Lost motion [mm] ${ }^{\text {Note 6) }}$			0.1 or less		
	Screw lead [mm]			12	6	3
	Impact/Vibration resistance [m/s ${ }^{2}$] Note 7)			50/20		
	Actuation type			$\begin{gathered} \text { Ball screw + Belt (LEY } \square \text {) } \\ \text { Ball screw (LEY } \square \mathrm{D}) \end{gathered}$		
	Guide type			Sliding bushing (Piston rod)		
	Enclosure Note 8)			IP65 equivalent		
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40		
	Operating humidity range [\%RH]			90 or less (No condensation)		
	Motor size			$\square 42$		
	Motor type			Servo motor (24 VDC)		
	Encoder			Incremental A/B phase (800 pulse/rotation)/Z-phase		
	Rated voltage [V]			24 VDC ± 10 \%		
	Power consumption [W] Note 9)			86		
	Standby power consumption when operating [W] ${ }^{\text {Note } 10)}$			4 (Horizontal)/12 (Vertical)		
	Max. instanta	neous power con	sumption [W] ${ }^{\text {Note 11) }}$	96		
	Type Note 12)			Non-magnetizing lock		
	Holding force [N]			78	157	294
	Power consumption [W] Note 13)			5		
	Rated voltage [V]			24 VDC ± 10 \%		

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Horizontal: The maximum value of the work load. An external guide is necessary to support the load. (Friction coefficient of guide: 0.1 or less) The actual work load and transfer speed change according to the condition of the external guide.
Vertical: Speed changes according to the work load. Check "Model Selection" on page 9. The values shown in () are the acceleration/deceleration. Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less. Note 3) Pushing force accuracy is ± 20 \% (F.S.).
Note 4) The pushing force values for LEY25AD is 50% to 95%. The pushing force values change according to the duty ratio and pushing speed. Check "Model Selection" on page 10.
Note 5) The allowable speed for pushing operation. When push conveying a workpiece, operate at the vertical work load or less.
Note 6) A reference value for correcting an error in reciprocal operation.
Note 7) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 8) Cannot be used in an environment where oil such as cutting oil splashes or it is constantly exposed to water. Take suitable protective measures.
Note 9) The power consumption (including the controller) is for when the actuator is operating.
Note 10) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation with the maximum work load. Except during the pushing operation.
Note 11) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 12) With lock only
Note 13) For an actuator with lock, add the power consumption for the lock.
Note 14) When mounting vertically and using the product facing upwards in an environment where water is present, take necessary measures to prevent water from splashing on the rod cover, because water will accumulate on the rod seal due to the structure of the product

Weight

Weight: Motor Top Mounting Type

	Model	LEY25									LEY32										
Stroke [mm]		30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product	Step motor	1.45	1.52	1.69	1.95	2.13	2.30	2.48	2.65	2.83	2.48	2.59	2.88	3.35	3.64	3.91	4.21	4.49	4.76	5.04	5.32
weight [kg]	Servo motor	1.41	1.48	1.65	1.91	2.09	2.26	2.44	2.61	2.79	-	-	-	-	-	-	-	-	-	-	-

Weight: In-line Motor Type

	Model	LEY25D									LEY32D										
Stroke [mm]		30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	Step motor	1.46	1.53	1.70	1.96	2.14	2.31	2.49	2.66	2.84	2.49	2.60	2.89	3.36	3.65	3.92	4.22	4.50	4.77	5.05	5.33
	Servo motor	1.42	1.49	1.66	1.92	2.10	2.27	2.45	2.62	2.80	-	-	-	-	-	-	-	-	-	-	-

Additional Weight

Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	0.33	0.63	
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot (2 sets including mounting bolt)	0.08	0.14	
Rod flange (including mounting bolt)	0.17	0.20	
Head flange (including mounting bolt)			

Series LEY-X5

Step Motor (Servo/24 VDC)

Construction

Motor top mounting type: LEY_{32}^{25}

In-line motor type: $\operatorname{LEY}_{32}^{25} \mathrm{D}$

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminium alloy	Anodised
$\mathbf{2}$	Ball screw (shaft)	Alloy steel	
$\mathbf{3}$	Ball screw nut	Resin/Alloy steel	
$\mathbf{4}$	Piston	Aluminium alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome Anodised
$\mathbf{6}$	Rod cover	Aluminium alloy	
$\mathbf{7}$	Housing	Aluminium alloy	
$\mathbf{8}$	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plated
$\mathbf{1 0}$	Connected shaft	Free cutting carbon steel	Nickel plated
$\mathbf{1 1}$	Bushing	Lead bronze cast	
$\mathbf{1 2}$	Bumper	Urethane	
$\mathbf{1 3}$	Bearing	-	
$\mathbf{1 4}$	Return box	Aluminium die-cast	Trivalent chromated
$\mathbf{1 5}$	Return plate	Aluminium die-cast	Trivalent chromated
16	Magnet	-	
$\mathbf{1 7}$	Wear ring holder	Stainless steel	Stroke 101 mm or more
$\mathbf{1 8}$	Wear ring	POM	Stroke 101 mm or more
19	Screw shaft pulley	Aluminium alloy	
$\mathbf{2 0}$	Motor pulley	Aluminium alloy	

No.	Description	Material	Note
21	Belt	-	
22	Bearing stopper	Aluminium alloy	
23	Parallel pin	Stainless steel	
24	Scraper	Nylon	
25	Retaining ring	Steel for spring	Nickel plated
26	Motor	-	
27	Lub-retainer	Felt	
28	O-ring	NBR	
29	Gasket	NBR	
30	Motor adapter	Aluminium alloy	Anodised
31	Motor cover	Aluminium alloy	Anodised
32	Seal connector	-	
33	End cover	Aluminium alloy	Anodised
34	Hub	Aluminium alloy	
35	Spider	NBR	
36	Motor block	Aluminium alloy	Anodised
37	Motor adapter	Aluminium alloy	LEY25 only
38	Socket (Male thread)	Free cutting carbon steel	Nickel plated
39	Nut	Alloy steel	

Replacement Parts (Top mounting only)/Belt

No.	Size	Order no.
$\mathbf{2 1}$	$\mathbf{2 5}$	LE-D-2-2
	$\mathbf{3 2}$	LE-D-2-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

[^2]
Electric Actuator/Rod Type Series LEY-X5
 Step Motor (Servo/24 VDC)
 Servo Motor (24 VDC)
 Dust/Drip proof (IP65 equivalent)

Dimensions

Motor top mounting type

[mm]

Body Bottom Tapped

Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100			42	41						
	101 to 124						75				
	125 to 200			59	49.5						
	201 to 400			76	58						
32	20 to 39	25	55	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100			36	43						
	101 to 124						80				
	125 to 200			53	51.5						
	201 to 500			70	60						

Note 1) Range within which the rod can move when it returns to origin. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
Note 5) The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole. Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

[^3]
Series LEY-X5

Dimensions

In-line motor type

Size	Stroke range [mm]	A		B	C	D	EH	EV	FH	FV	G	H	J	K	L
		Without lock	With lock												
25	15 to 100	250	300	89.5	13	20	44	45.5	57.6	57.7	94.7	M8 x 1.25	24	17	14.5
	101 to 400	275	325	114.5											
32	20 to 100	265.5	315.5	96	13	25	51	56.5	69.6	79.6	116.6	M8 $\times 1.25$	31	22	18.5
	101 to 500	295.5	345.5	126											

Size	Stroke range [mm]	M	O1	R	OA	OB	PA	PB	Q	U	PC	W		Y
												Without lock	With lock	
25	15 to 100	34	M5 x 0.8	8	37	38	15.4	8.2	28	0.9	15.9	146	196	24.5
	101 to 400													
32	20 to 100	40	M6 x 1.0	10	37	38	15.4	8.2	28	1	15.9	151	201	27
	101 to 500													

Body Bottom Tapped
[mm]

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	101 to 124					75				
	125 to 200		59	49.5						
	201 to 400		76	58						
32	20 to 39	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100		36	43		50				
	101 to 124					80				
	125 to 200		53	51.5						
	201 to 500		70	60						

Note 1) Range within which the rod can move when it returns to origin. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
Note 5) The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole.
Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

For the rod end male thread, refer to page 22. For the mounting bracket dimensions, refer to page 26.

Water Resistant 2-Colour Indication Solid State Auto Switch: Direct Mounting Style D-M9NA(V)/D-M9PA(V)/D-M9BA(V) (\in RoHs

Auto Switch Specifications

Grommet

- Water (coolant) resistant type
- 2-wire load current is reduced (2.5 to 40 mA).
- The optimum operating range can be determined by the colour of the light. (Red \rightarrow Green \leftarrow Red)
- Using flexible cable as standard.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit
D-M9NA/M9NAV

D-M9PA/M9PAV

D-M9BA/M9BAV

| D-M9 \square A, D-M9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | AV (With indicator light) - PLC: Programmable Logic Controller

Weight

[g]

Auto switch model		D-M9NA(V)	D-M9PA(V)	D-M9BA(V)
Lead wire length $[\mathrm{m}]$	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

Dimensions
[mm]

D-M9■A

M $2.5 \times 4 \mathrm{~L}$
Slotted set screw

D-M9BAV $\square / D-M 9 N A V \square$

Electric Actuator/Rod Type

Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

Series 25A-LEY C \in. .N.
 LEY16, 25, 32, 40

$\text { Etherivet/IP }{ }^{\text {PRQOFI }} \text { IO-Link }$					Compatible Page 99

How to Order

(1) Size	(2) Motor mounting position	
16	-	Top mounting
25	R	Right side parallel
32	L	Left side parallel
40	D	In-line

3 Motor type					
Symbol	Type	Size			Compatiblecontrollers/driver
		LEY16	LEY25	LEY32/40	
-	Step motor (Servo/24 VDC)	\bigcirc	\bigcirc	\bigcirc	LECP6 LECP1 LECPA
A	Servo motor (24 VDC)	\bigcirc	\bigcirc	-	LECA6

4 Lead [mm]

Symbol	LEY16	LEY25	LEY32/40
A	10	12	16
B	5	6	8
C	2.5	3	4

5 Stroke [mm]
30 30 to to 500 500

* Refer to the applicable stroke table.

(6) Motor option

C	With motor cover
W	With lock/motor cover

* When "With lock/motor cover" is selected for the top mounting and right/left side parallel types, the motor body will stick out of the end of the body for size 16 with strokes 30 or less. Check for interference with workpieces before selecting a model.
Mounting Bracket Part No. for Series 25A-

Applicable size	Foot *1	Flange	Double clevis
$\mathbf{1 6}$	$25-$ LEY-L016	$25-$ LEY-F016	$25-$ LEY-D016
$\mathbf{2 5}$	$25-$ LEY-L025	$25-$ LEY-F025	$25-$ LEY-D025
$\mathbf{3 2 , 4 0}$	$25-$ LEY-L032	$25-$ LEY-F032	$25-$ LEY-D032
Surface treatment	RAYDENT ${ }^{\circledR}$	RAYDENT ${ }^{\circledR}$	Coating (Size 16: Electroless nickel plating)

*1 When ordering foot brackets, order 2 pieces per actuator.
*2 Parts belonging to each bracket are as follows.
Foot, Flange: Body mounting bolt, Double clevis: Clevis pin, Type C retaining ring for axis, Body mounting bolt

\triangle Caution

[CE-compliant products]
(1)EMC compliance was tested by combining the electric actuator LEY series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions.
As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to the website www.smc.eu for the noise filter set. Refer to the LECA Operation Manual for installation. [UL-compliant products]
When conformity to UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.

Standard												
	30	50	100	150	200	250	300	350	400	450	500	Manufacturable stroke range [mm]
LEY16	\bigcirc	-	-	-	-	10 to 300						
LEY25	\bigcirc	O	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	15 to 400
LEY32/40	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	20 to 500

* Consult with SMC for non-standard strokes as they are produced as special orders.

For details about auto switches, refer to "Series Compatible with Secondary Batteries".

Applicable auto switches

D-M9N(V)-900, D-M9P(V)-900, D-M9B(V)-900
D-M9NW(V)-900, D-M9PW(V)-900, D-M9BW(V)-900

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number (after "25A-"). This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP)

* Refer to the operation manual for using the products. Please download it via our website, http://www.smc.eu

8 Mounting*1			
Symbol	Type	Motormounting position	
		TopParallel	In-line
-	Ends tapped (Standard)*2	\bigcirc	\bigcirc
L	Foot	\bigcirc	-
F	Rod flange*2	\bigcirc	\bigcirc
G	Head flange*2	- *	-
D	Double clevis*3	\bigcirc	-

*1 Mounting bracket is shipped together, (but not assembled).
*2 For horizontal cantilever mounting with the rod flange, head flange and ends tapped, use the actuator within the following stroke range.

- LEY25: 200 or less

LEY32/40: 100 or less
*3 For mounting with the double clevis, use the actuator within the following stroke range.
LEY16: 100 or less
LEY25: 200 or less
LEY32/40: 200 or less
*4 Head flange is not available for the LEY32/40.

Controller/Driver mounting

-	Screw mounting
D	DIN rail mounting*1

*1 DIN rail is not included. Order it separately.

9 Actuator cable type*

-	Without cable
\mathbf{S}	Standard cable*2
\mathbf{R}	Robotic cable (Flexible cable)*3

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2 Only available for the motor type "Step motor".
*3 Fix the motor cable protruding from the actuator to keep it unmovable. For details about fixing method, refer to Wiring/Cables in the Electric Actuators Precautions.

1 Controller/Driver type*1		
-	Without controller/driver	
6N	LECP6/LECA6	NPN
6P	(Step data input type)	PNP
1N	LECP1*2(Programless type)	NPN
1P		PNP
AN	$\begin{gathered} \text { LECPA*3 } \\ \text { (Pulse input type) } \end{gathered}$	NPN
AP		PNP

*1 For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.
*2 Only available for the motor type "Step motor".
*3 When pulse signals are open collector, order the current limit resistor (LEC-PA-R- \square) separately.
10 Actuator cable length [m]

-	Without cable
$\mathbf{1}$	1.5
3	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

* Produced upon receipt of order (Robotic cable only)
12 I/O cable length $[\mathrm{m}]^{* 1}$, Communication plug

-	Without cable (Without communication plug connector)
$\mathbf{1}$	1.5
3	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer LEY catalogue if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

* Specifications and dimensions for the 25A-series are the same as standard products.

Compatible Controllers/Driver

* Copper and zinc materials are used for the motors, cables, controllers/drivers.

Handling

\triangle Caution

Change of material

Series 25A- are copper- and zinc-free products, however, some parts including coils for motors, cables, drivers and auto switches, and connector pins and lead wires, whose material can not be changed, are made of copper.

Chemical environment

Refrain from using the products in such environments as exposed to chemicals. Otherwise, resin parts may deteriorate. If you want SMC to test the products for the effects of chemicals attached to them, send the products back to SMC after thoroughly cleaning them. Consult your SMC sales representative for further details.

Trademark

DeviceNet ${ }^{\text {TM }}$ is a trademark of ODVA.
EtherCAT ${ }^{\circledR}$ is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Moment Load Graph

Selection conditions

Mounting position	Vertical	Horizontal	
Max. speed [mm/s]	"Speed-Vertical Work Load Graph"	200 or less	Over 200
Graph (Sliding bearing type)	(1), (2)	(5), (6)*	-
Graph (Ball bushing bearing type)	(3), (4)	(7), 8)	(9), (10)

* For the sliding bearing type, the speed is restricted with a horizontal/moment load.

* The limit of vertical load mass varies depending on "lead" and "speed".

Check "Speed-Vertical Work Load Graph" on page 42.
Vertical Mounting, Ball Bushing Bearing

(4) Over 40 stroke

[^4]
Series LEYG

Step Motor (Servo/24 VDC)

Moment Load Graph

Horizontal Mounting, Sliding Bearing

* For the specifications below, operate the system at the "load mass" shown in the graph $\times 80 \%$.
- LEYG25MAA/Servo motor (24 VDC), Lead 12

Horizontal Mounting, Ball Bushing Bearing

(7) $\mathbf{L}=\mathbf{5 0} \mathbf{~ m m}$ Max. speed $=\mathbf{2 0 0} \mathbf{~ m m / s ~ o r ~ l e s s ~}$
(9) $L=50$ mm Max. speed $=$ Over 200 mm/s

(8) $L=100 \mathbf{m m}$ Max. speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(10) $L=100$ mm Max. speed = Over 200 mm/s

Operating Range when Used as Stopper

LEYG $\square \mathrm{M}$ (Sliding bearing)

\triangle Caution

Handling Precautions

Note 1) When used as a stopper, select a model with 30 stroke or less.
Note 2) LEYG \square (ball bushing bearing) cannot be used as a stopper
Note 3) Workpiece collision in series with guide rod cannot be permitted (Fig. a).
Note 4) The body should not be mounted on the end. It must be mounted on the top or bottom (Fig. b).

Fig. b *

Speed-Work Load Graph (Guide)
For Step Motor (Servo/24 VDC) LECP6, LECP1, JXCE1/91/P1/D1/L1

Horizontal

LEYG16M \square
$\nabla \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG25 ${ }^{\text {M }} \square$
Z 7 for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG32ㅆㄴㄴ
$\nabla 7$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG40 ${ }_{\mathrm{L}}^{\mathrm{M}} \square$
$\square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical
LEYG16 ${ }_{\mathrm{L}} \square$

LEYG25ㄴㄴㄴ

LEYG32 ${ }_{\mathrm{L}}^{\mathrm{L}} \square$

LEYG40M \square

Series LEYG

Step Motor (Servo/24 VDC)
Speed-Work Load Graph (Guide)
For Step Motor (Servo/24 VDC) LECPA, JXC73/83/92/93

Horizontal

LEYG16 ${ }_{\mathrm{L}}^{\mathrm{M}} \square \quad \square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG25른 \square Z \backslash for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG32 ${ }_{\mathrm{L}}^{\mathrm{M}} \square$ Z \backslash for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG40는 \square

Vertical

LEYG16 ${ }^{\text {M }} \square$

LEYG25눈

LEYG32ㄴㄴㄴ

LEYG40M \square

Speed-Work Load Graph (Guide)

Horizontal

LEYG16는ㅁ

LEYG25 ${ }_{\mathrm{L}}^{\mathrm{M}}$ A \square

Vertical

LEYG16 ${ }_{\text {M }}$ A \square

LEYG25 ${ }_{\mathrm{L}}^{\mathrm{M}} \mathrm{A} \square$

Force Conversion Graph (Guide)

Step Motor (Servo/24 VDC)

LEYG16M \square

LEYG25 ${ }_{\mathrm{L}} \square$

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]					
$\mathbf{4 0}$					$40^{\circ} \mathrm{C}$ or less	65 or less	100	-
:---:	:---:	:---:	:---:					

LEYG32 ${ }_{\mathrm{L}}^{\mathrm{L}} \square$

| Ambient temperature | Set value of pushing force [\%] | Duty ratio [\%] | Continuous pushing time [minute] |
| :--- | :--- | :--- | :--- | | $40^{\circ} \mathrm{C}$ or less | 65 or less | 100 |
| :--- | :--- | :--- |

Servo Motor (24 VDC)
LEYG16 ${ }_{\mathrm{L}}^{\mathrm{M}} \mathrm{A} \square$

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute],				
$40^{\circ} \mathrm{C}$					$40^{\circ} \mathrm{C}$ or less	95 or less	100
:---	:---	:---					

LEYG25 ${ }_{\mathrm{L}}^{\mathrm{M}} \mathrm{A} \square$

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
$\mathbf{4 0} 0^{\circ} \mathrm{C}$ or less	95 or less	100	-

<Pushing Force and Trigger Level Range> Without Load

Model	Pushing speed [mm/s]	Pushing force (Setting input value)	Model	Pushing speed [mm/s]	Pushing force (Setting input value)
LEYG16 ${ }^{\text {M }} \square$	1 to 4	30% to 85%	LEYG16 ${ }_{\text {² }} \square$	1 to 4	40% to 95%
	5 to 20	35% to 85%		5 to 20	60% to 95%
	21 to 50	60% to 85%		21 to 50	80% to 95%
LEYG25는	1 to 4	20 \% to 65	LEYG25늠	1 to 4	40 \% to 95
	5 to 20	35% to 65%		5 to 20	60% to
	21 to 35	50 \% to 65%		21 to 35	80 \% to 95
LEYG32 ${ }^{\text {M }} \square$	1 to 4	20 \% to 85%	* The pushing force in the table shows the range within which the completion signal [INP] is normally output. If the product is operated outside this range (low pushing force), the [INP] signal may be output when the actuator is moving (before pushing).		
	5 to 20	35% to 85%			
	21 to 30	60% to 85%			
LEYG40ㄴ \square	1 to 4	20 \% to 65%			
	5 to 20	35% to 65%			
	21 to 30	50% to 65%			

<Set Values for Vertical Upward Transfer Pushing Operation>
For vertical loads (upward), set the pushing force to the maximum value shown below, and operate at the work load or less.

Model	LEYG16[■			LEYG25 ${ }^{\text {M }} \square$			LEYG32L \square			LEYG40 ${ }_{\text {L }}$			LEYG16 ${ }^{1 /} \square \mathrm{A}$			LEYG25 ${ }^{\text {I }} \square \mathrm{A}$		
Lead	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C
Work load [kg]	0.5	1	2.5	1.5	4	9	2.5	7	16	5	12	26	0.5	1	2.5	0.5	1.5	4
Pushing force	85 \%			65 \%			85\%			65 \%			95 \%			95 \%		

Allowable Rotational Torque of Plate

Model	T $[\mathrm{N} \cdot \mathrm{m}]$				
	30	50	100	200	300
LEYG16M	0.70	0.57	1.05	0.56	-
LEYG16L	0.82	1.48	0.97	0.57	-
LEYG25M	1.56	1.29	3.50	2.18	1.36
LEYG25L	1.52	3.57	2.47	2.05	1.44
LEYG32M	2.55	2.09	5.39	3.26	1.88
LEYG32L	2.80	5.76	4.05	3.23	2.32
LEYG40M	2.55	2.09	5.39	3.26	1.88
LEYG40L	2.80	5.76	4.05	3.23	2.32

Plate Displacement: δ

Size	Non-rotating accuracy θ	
	LEYG $\square \mathbf{M}$	LEYG $\square \mathbf{L}$
$\mathbf{1 6}$	0.06°	0.05°
$\mathbf{2 5}$	0.05°	0.04°
$\mathbf{3 2}$		
$\mathbf{4 0}$		

[mm]

Model	Stroke [mm]				
	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$
LEYG16M	± 0.20	± 0.25	± 0.24	± 0.27	-
LEYG16L	± 0.13	± 0.12	± 0.17	± 0.19	-
LEYG25M	± 0.26	± 0.31	± 0.25	± 0.38	± 0.36
LEYG25L	± 0.13	± 0.13	± 0.17	± 0.20	± 0.23
LEYG32M	± 0.23	± 0.29	± 0.23	± 0.36	± 0.34
LEYG32L	± 0.11	± 0.11	± 0.15	± 0.19	± 0.22

Electric Actuator/Guide Rod Type

Series LEYG LEYG16, 25, 32, 40
 $\mathrm{C} \in$

Multi-Axis Step Motor Controller Compatible Page 108

How to Order

(2) Bearing type

\mathbf{M}	Sliding bearing
\mathbf{L}	Ball bushing bearing

* When [M: Sliding bearing] is selected, the maximum speed of lead [A] is $400 \mathrm{~mm} / \mathrm{s}$ (at no-load, horizontal mounting). The speed is also restricted with a horizontal/moment load. Refer to "Model Selection" on page 40.

Motor type

Symbol	Type	Size			Compatible controllers/driver
		LEYG25	LEYG32/40		LECP6 LECP1 LECPA
A	Step motor (Servo/24 VDC)	-			Servo motor (24 VDC)

5 Lead [mm]

Symbol	LEYG16	LEYG25	LEYG32/40
A	10	12	16
B	5	6	8
C	2.5	3	4

Motor option

-	Without option
\mathbf{C}	With motor cover
B	With lock
W	With lock and motor cover

* When "With lock" or "With lock/motor cover" are selected for the top mounting type, the motor body will stick out of the end of the body for size $16 / 40$ with stroke 30 mm or less. Check for interference with workpieces before selecting a model.

6 Stroke [mm]
30 30 to to 300 300

* Refer to the applicable stroke table.

8 Guide option

-	Without option
F	With grease retaining function

* Only available for size 25,32 and 40 sliding bearings. (Refer to "Construction" on page 51.)

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEYG series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 73 for the noise filter set. Refer to the LECA
Operation Manual for installation.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

For auto switches, refer to pages 27 and 28.

Applicable stroke table OStandard								
Model	30	50	100	150	200	250	300	Manufacturable stroke range [mm]
LEYG16	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	10 to 200
LEYG25	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	15 to 300
LEYG32/40	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	20 to 300

* Consult with SMC for non-standard strokes as they are produced as special orders.

The actuator and controller/driver are sold as a package.
Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^5]

Actuator cable type＊

-	Without cable
\mathbf{S}	Standard cable＊2
\mathbf{R}	Robotic cable（Flexible cable）＊3

＊1 The standard cable should be used on fixed parts．For using on moving parts，select the robotic cable．
＊2 Only available for the motor type＂Step motor＂．
＊3 Fix the motor cable protruding from the actuator to keep it unmovable．For details about fixing method，refer to Wiring／Cables in the Electric Actuators Precautions．

12 I／O cable length［m］＊1

-	Without cable
$\mathbf{1}$	1.5
3	$3^{* 2}$
5	$5^{* 2}$

＊1 If＂Without controller／driver＂is selected for controller／driver types，I／O cable cannot be selected．Refer to page 73 （For LECP6／ LECA6），page 86 （For LECP1）or page 93 （For LECPA）if I／O cable is required．
＊2 When＂Pulse input type＂is selected for controller／driver types，pulse input usable only with differential．Only 1.5 m cables usable with open collector．
10 Actuator cable length［m］

-	Without cable
$\mathbf{1}$	1.5
3	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

＊Produced upon receipt of order（Robotic cable only） Refer to the specifications Note 5）on page 49.

13 Controller／Driver mounting

-	Screw mounting
\mathbf{D}	DIN rail mounting＊1

1 Controller／Driver type＊1		
－	Without controller／driver	
6N	LECP6／LECA6	NPN
6P	（Step data input type）	PNP
1N	LECP1＊	NPN
1P	（Programless type）	PNP
AN	$\begin{gathered} \text { LECPA*2,*3 } \\ \text { (Pulse input type) } \end{gathered}$	NPN
AP		PNP

＊1 For details about controllers／driver and compatible motors，refer to the compatible controller／drivers below．
＊2 Only available for the motor type＂Step motor＂．
＊3 When pulse signals are open collector，order the current limiting resistor separately．
＊1 Only available for the controller／driver types ＂6N＂and＂6P＂．

For the parts hidden behind the guide attachment（Rod stick out side），the auto switch cannot be fixed． Consult with SMC when using auto switch on the rod stick out side．

Compatible Controllers／Driver

Specifications
Step Motor（Servo／24 VDC）

Model				LEYG16 ${ }_{\text {L }}$			LEYG25 ${ }_{\text {L }}$			LEYG32 ${ }_{\text {L }}$			LEYG40 ${ }_{\text {L }}$		
	Stroke［mm］Note 1）			30，50，100，150， 200			30，50，100，150，200，250， 300			30，50，100，150，200，250， 300			30，50，100，150，200，250， 300		
	Work load ［kg ］Note 2）	Horizonta （LECP6， LECP1， JXC $\square 1$ ）	Acceleration／Deceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	6	17	30	20	40	60	30	45	60	50	60	80
			Acceleration／Deceleration at $2000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	10	23	35	30	55	70	40	60	80	60	70	90
		Horizontal （LECPA， JXC $\square 3$ ）	Acceleration／Deceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	4	11	20	12	30	30	20	40	40	30	60	60
			Acceleration／Deceleration at $2000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	6	17	30	18	50	50	30	60	60	－	－	－
		Vertical	Acceleration／Deceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	1.5	3.5	7.5	7	15	29	9	20	41	11	25	51
－	Pushing force［N］Note 3）4）5）			14 to 38	27 to 74	51 to 141	63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
웅	Speed $[\mathrm{mm} / \mathrm{s}]^{\text {Note } 5)}$	LEC	CP6／LECP1	15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125	24 to 500	12 to 300	6 to 150	24 to 500	12 to 350	6 to 175
한			LECPA								12 to 250	6 to 125	24 to 300	12 to 150	6 to 75
$\stackrel{1}{3}$	Max．acceleration／deceleration［mm／s²］			3000											
4	Pushing speed［mm／s］${ }^{\text {Note 6）}}$			50 or less			35 or less			30 or less			30 or less		
	Positioning repeatability［mm］			± 0.02											
	Lost motion［mm］Note 7）			0.1 or less											
	Screw lead［mm］			10	5	2.5	12	6	3	16	8	4	16	8	4
	Impact／Vibration resistance［ $\left.\mathrm{m} / \mathrm{s}^{2}\right]^{\text {Note }}$ 8）			50／20											
	Actuation type			Ball screw＋Belt（LEYG $\square \square$ ），Ball screw（LEYG $\square \square \mathrm{D}$ ）											
	Guide type			Sliding bearing（LEYG $\square \mathrm{M}$ ），Ball bushing bearing（LEYG $\square \mathrm{L}$ ）											
	Operating temp．range［ ${ }^{\text {C }}$ ］			5 to 40											
	Operating humidity range［\％RH］			90 or less（No condensation）											
	Motor size			$\square 28$			$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Step motor（Servo／24 VDC）											
	Encoder			Incremental A／B phase（800 pulse／rotation）											
	Rated voltage［V］			24 VDC ± 10 \％											
	Power consumption［W］Note 9）			23			40			50			50		
	Standby power consumption when operating［W］［dei 10$)$			16			15			48			48		
	Max．instantaneous power consumption［W］${ }^{\text {Noie 11］}}$			43			48			104			106		
－	Type Note 12）			Non－magnetizing lock											
或第	Holding force［N］			20	39	78	78	157	294	108	216	421	127	265	519
皆：	Power consumption［W］Note 13）			2.9			5			5			5		
	Rated voltage［V］			24 VDC ± 10 \％											

Note 1）Please consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）Horizontal：An external guide is necessary to support the load（Friction coefficient of guide： 0.1 or less）．The actual work load and transfer speed change according to the condition of the external guide．Also，speed changes according to the work load．Check＂Model Selection＂on pages 42 and 43.
Vertical：Speed changes according to the work load．Check＂Model Selection＂on pages 42 and 43.
Set the acceleration／deceleration values to be 3000 ［ $\mathrm{mm} / \mathrm{s}^{2}$ ］or less．
Note 3）Pushing force accuracy is ± 20 \％（F．S．）．
Note 4）The pushing force values for LEYG16 $\square \square$ is 35% to 85% ，for LEYG25 $\square \square$ is 35% to 65% ，for LEYG32 $\square \square$ is 35% to 85% and for LEYG40 $\square \square$ is 35% to 65% ．The pushing force values change according to the duty ratio and pushing speed．Check＂Model Selection＂on page 45.
Note 5）The speed and force may change depending on the cable length，load and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20% ）
When［M：Sliding bearing］is selected，the maximum speed of lead［A］is $400 \mathrm{~mm} / \mathrm{s}$（at no－load，horizontal mounting）． The speed is also restricted with a horizontal／moment load．Refer to＂Model Selection＂on page 40.
Note 6）The allowable speed for the pushing operation．
Note 7）A reference value for correcting an error in reciprocal operation．
Note 8）Impact resistance：No malfunction occurred when it was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 9）The power consumption（including the controller）is for when the actuator is operating．
Note 10）The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during the operation．Except during the pushing operation．
Note 11）The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．
Note 12）With lock only
Note 13）For an actuator with lock，add the power consumption for the lock．

Specifications

Servo Motor (24 VDC)

Model				LEYG16 ${ }_{\text {L }}$			LEYG25 ${ }_{\text {L }}$ A		
Stroke [mm] Note 1)				30, 50, 100, 150, 200			30, 50, 100, 150, 200, 250, 300		
	Work load [kg] ${ }^{\text {Note 2) }}$	Hriounta	$\begin{gathered} \text { Acceleration } / \text { Deceleration } \\ \text { at } 3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right] \end{gathered}$	3	6	12	7	15	30
		Verical	$\begin{array}{\|c} \text { Acceleration/Deccleration } \\ \text { at } 3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right] \end{array}$	1.5	3.5	7.5	2	5	11
	Pushing	g for	ce [N] ${ }^{\text {Note 3) 4) }}$	16 to 30	30 to 58	57 to 111	18 to 35	37 to 72	66 to 130
$\stackrel{\circ}{\square}$	Speed [[mm/		15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125
$\stackrel{\mathscr{O}}{2}$	Max. acceleration/deceleration [mm/s²]			3000					
-	Pushing speed [$\mathrm{mm} / \mathrm{s}]^{\text {Note } 5)}$			50 or less			35 or less		
\%	Positioning repeatability [mm]			± 0.02					
\%	Lost motion [mm] Noie 6]			0.1 or less					
$\stackrel{\text { In }}{2}$	Screw lead [mm]			10	5	2.5	12	6	3
8	ImpactVibration resistance [m/s $\left.{ }^{2}\right]^{\text {Note } 7]}$			50/20					
	Actuation type								
	Guide type								
	Operating temp. range [${ }^{\circ} \mathrm{C}$]			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condenstation)					
	Motor size			$\square 28$			$\square 42$		
	Motor output [W]			30			36		
	Motor type			Servo motor (24 VDC)					
	Encoder			Incremental A/B (800 pulse/rotation)/Z phase					
	Rated voltage [V]			24 VDC ± 10 \%					
	Power consumption [W] ${ }^{\text {Note } 8)}$			40			86		
	Standy powerc consumplion when operating (WW Wes			4 (Horizontal)/6 (Vertical)			4 (Horizontal)/12 (Vertical)		
	Max. instantaneous pover consumplion [W] West 0]			59			96		
\pm	Type Note 11)			Non-magnetizing lock					
	Holding force [N]			20	39	78	78	157	294
号:	Power consumption [W] ${ }^{\text {Note 12) }}$			2.9			5		

Weight

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders
Note 2) Horizontal: The maximum value of the work load for the positioning operation. The work load is the same as the vertical work load during pushing operation. An external guide is necessary to support the load. The actual work load and transfer speed change according to the condition of the external guide.
Vertical: Check "Model Selection" on page 44 for details. Set the acceleration/deceleration values to be 3000 [$\mathrm{mm} / \mathrm{s}^{2}$] or less.
Note 3) Pushing force accuracy is ± 20 \% (F.S.).
Note 4) The pushing force values for LEYG16 $\square \mathrm{A} \square$ is 50% to 95 $\%$ and for LEYG25 $\square \square \square$ is 50% to 95%. The pushing force values change according to the duty ratio and pushing speed. Check "Model Selection" on page 45.
Note 5) The allowable speed for the pushing operation.
Note 6) A reference value for correcting an error in reciprocal operation.
Note 7) Impact resistance: No malfunction occurred when it was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 8) The power consumption (including the controller) is for when the actuator is operating.
Note 9) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation.
Note 10) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 11) With lock only
Note 12) For an actuator with lock, add the power consumption for the lock.

Weight: Motor Top Mounting Type

Model		LEYG16M					LEYG25M							LEYG32M						
Stroke [mm]		30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight [kg]	Step motor	0.83	0.97	1.20	1.49	1.66	1.67	1.86	2.18	2.60	2.94	3.28	3.54	2.91	3.17	3.72	4.28	4.95	5.44	5.88
	Servo motor	0.83	0.97	1.20	1.49	1.66	1.63	1.82	2.14	2.56	2.90	3.24	3.50	-	-	-	-	-	-	-
Model		LEYG16L					LEYG25L							LEYG32L						
Stroke [mm]		30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight [kg]	Step motor	0.84	0.97	1.14	1.43	1.58	1.68	1.89	2.13	2.56	2.82	3.14	3.38	2.91	3.18	3.57	4.12	4.66	5.17	5.56
	Servo motor	0.84	0.97	1.14	1.43	1.58	1.64	1.85	2.09	2.52	2.78	3.10	3.34	-	-	-	-	-	-	-
Model		LEYG40M							LEYG40L											
Stroke [mm]		30	50	100	150	200	250	300	30	50	100	150	200	250	300					
Product weight [kg]	Step motor	3.21	3.47	4.02	4.58	5.25	5.74	6.18	3.21	3.48	3.87	4.42	4.96	5.47	5.86					
	Servo motor	-	-	-	-	-	-	-	-	-	-	-	-	-	-					

Weight: In-line Motor Type

Model		LEYG16M					LEYG25M							LEYG32M						
Stroke [mm]		30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight [kg]	Step motor	0.83	0.97	1.20	1.49	1.66	1.66	1.85	2.17	2.59	2.93	3.27	3.53	2.90	3.16	3.71	4.27	4.94	5.43	5.87
	Servo motor	0.83	0.97	1.20	1.49	1.66	1.62	1.81	2.13	2.55	2.89	3.23	3.49	-	-	-	-	-	-	-
Model		LEYG16L					LEYG25L							LEYG32L						
Stroke [mm]		30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight [kg]	Step motor	0.84	0.97	1.14	1.43	1.58	1.67	1.88	2.12	2.55	2.81	3.13	3.37	2.90	3.17	3.56	4.11	4.65	5.16	5.55
	Servo motor	0.84	0.97	1.14	1.43	1.58	1.63	1.84	2.08	2.51	2.77	3.09	3.33	-	-	-	-	-	-	-
Model		LEYG40M							LEYG40L											
Stroke [mm]		30	50	100	150	200	250	300	30	50	100	150	200	250	300					
Product weight [kg]	Step motor	3.20	3.46	4.01	4.57	5.24	5.73	6.17	3.20	3.47	3.86	4.41	4.95	5.46	5.85					
	Servo motor	-	-	-	-	-	-	-	-	-	-	-	-	-	-					

Additional Weight

Additional Weight				
Size	$\mathbf{1 6}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Lock	0.12	0.26	0.53	0.53
Motor cover	0.02	0.03	0.04	0.05
Lock/Motor cover	0.16	0.32	0.61	0.62

Series LEYG

Construction

Motor top mounting type

Motor top mounting type With lock/motor cover

In-line motor type

In-line motor type

With lock/motor cover

Construction

LEYG $\square M$

$\operatorname{LEYG}_{32}^{16}{ }_{40}^{16} \mathrm{M}: 50$ st or less

LEYG $\mathrm{G}_{32}^{162} \mathbf{1 6}$: Over 50st

LEYG■L

LEYG16L: 30st or less

LEYG ${ }_{40}^{25} \mathrm{~L}$: 100st or less

LEYG16L: Over 30st, 100st or less

When grease retaining function selected LEYG ${ }_{30}^{25}{ }_{40}^{25} \square \square{ }_{\mathrm{C}}^{\mathrm{A}}-\square \square \mathrm{F}$: 50 st or less

Note) Felt material is inserted to retain grease at the sliding part of the sliding bearing. This lengthens the life of the sliding part, but does not guarantee it permanently.

LEYG ${ }_{42}^{165} \mathrm{~L}$ L: Over 100st
 periodically.
Grease should be applied at 1 million cycles or 200 km, whichever comes first.

Component Parts

No.	Description	Material	Note
1	Body	Aluminium alloy	Anodised
2	Ball screw (shaft)	Alloy steel	
3	Ball screw nut	Resin/Alloy steel	
4	Piston	Aluminium alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminium alloy	
7	Housing	Aluminium alloy	
8	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Lead bronze cast	
12	Bumper	Urethane	
13	Bearing	-	
14	Return box	Aluminium die-cast	Coating
15	Return plate	Aluminium die-cast	Coating
16	Magnet	-	
17	Wear ring holder	Stainless steel	Stroke 101 mm or more
18	Wear ring	POM	Stroke 101 mm or more
19	Screw shaft pulley	Aluminium alloy	
20	Motor pulley	Aluminium alloy	
21	Belt	-	
22	Bearing stopper	Aluminium alloy	
23	Parallel pin	Stainless steel	
24	Seal	NBR	
25	Retaining ring	Steel for spring	Phosphate coated
26	Motor	-	
27	Motor cover	Synthetic resin	Only "With motor cover"
28	Grommet	Synthetic resin	Only "With motor cover"

Replacement Parts/Belt		
No.	Size	Order no.
21	16	LE-D-2-1
	25	LE-D-2-2
	$\mathbf{3 2 , 4 0}$	LE-D-2-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
Guide rod	GR-S-020 $(20 \mathrm{~g})$

* Apply grease on the piston rod

No.	Description	Material	Note
$\mathbf{2 9}$	Guide attachment	Aluminium alloy	Anodised
$\mathbf{3 0}$	Guide rod	Carbon steel	
$\mathbf{3 1}$	Plate	Aluminium alloy	Anodised
$\mathbf{3 2}$	Plate mounting cap screw	Carbon steel	Nickel plating
$\mathbf{3 3}$	Guide cap screw	Carbon steel	Nickel plating
$\mathbf{3 4}$	Sliding bearing	-	
35	Lube-retainer	Felt	
36	Holder	Resin	
$\mathbf{3 7}$	Retaining ring	Steel for spring	Phosphate coated
$\mathbf{3 8}$	Ball bushing	-	
39	Spacer	Aluminium alloy	Chromated
40	Motor block	Aluminium alloy	Anodised
41	Motor adapter	Aluminium alloy	Anodised/LEY16, 25 only
42	Hub	Aluminium alloy	
43	Spider	NBR	
44	Motor cover with lock	Aluminium alloy	Only "With lock/motor cover"'
45	Cover support	Aluminium alloy	Only "With lock/motor cover"'

Dimensions: Motor Top Mounting

LEYG $\square \mathrm{L}$ (Ball bushing bearing)
Standard stroke: 50, 100, 200

Size	Stroke range	L	DB
16	90st or less	75	8
	91st or more, 200st or less	105	
25	114st or less	91	10
	115st or more, 190st or less	115	
	191st or more, 300st or less	133	
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	114st or less	97.5	13
	115st or more, 190st or less	116.5	
	191st or more, 300st or less	134	

Note 1) Range within which the rod can move when it returns to origin.
Make sure a workpiece mounted on the rod does not interfere with the work pieces and facilities around the rod.
Note 2) Position after return to origin.
Note 3) The number in brackets indicates when the direction of return to origin has changed.
Note 4) Through holes cannot be used for size $32 / 40$ with 50 mm stroke or less.

LEYG $\square \mathbf{M}$ (Sliding bearing) Standard stroke: 30, 50, 100

[mm			
Size	Stroke range	L	DB
16	64st or less	51.5	10
	65st or more, 90st or less	74.5	
	91st or more, 200st or less	105	
25	59st or less	67.5	12
	60st or more, 185st or less	100.5	
	186st or more, 300st or less	138	
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	54st or less	74	16
	55st or more, 180st or less	107	
	181st or more, 300st or less	144	

LEYG $\square \mathrm{M}$, LEYG $\square \mathrm{L}$ Common

Size	Stroke range	A	B	C	DA	EA	EB	EH	EV	FA	FB	FC	G	GA	H	J	K	M	NA	NB	NC
16	39st or less	109	90.5	37	16	35	69	83	41.3	8	10.5	8.5	4.3	32	74.3	24.3	23	25.5	M4 x 0.7	7	5.5
	40st or more, 100st or less			52																	
	101st or more, 200st or less	129	110.5	82																	
	39st or less	141.5	116	50	20	46	85	103	52.5	11	14.5	12.5	5.4	40.5	98.8	30.8	29	34	M5 x 0.8	8	6.5
25	40st or more, 100st or less	166.5	141	67.5																	
	125st or more, 200st or less			84.5																	
	201 st or more, 300st or less			102																	
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	39st or less	160.5	130	55	25	60	101	123	64	12	18.5	16.5	5.4	50.5	125.3	38.3	30	40	M6 x 1.0	10	8.5
	40st or more, 100st or less	190.5	160	68																	
	125st or more, 200st or less			85																	
	201 st or more, 300st or less			102																	
Size	Stroke range	OA	OB	P	Q	S	T	U	V	$\begin{array}{\|l\|} \hline \text { Step } \\ \hline \text { VA } \end{array}$	motor VB	Servo VA	motor VB	WA	WB	WC	X	XA	XB	Y	Z
	39st or less	M5 x 0.8	10	65	15	25	79	6.8	28	80.3	61.8	81	62.5	25	19	55	44	3	4	22.5	6.5
16	40st or more, 100st or less													40	26.5						
	101st or more, 200st or less													70	41.5	75					
25	39st or less	M6x 1.0	12	80	18	30	95	6.8	42	85.4	63.4	81.6	59.6	35	26	70	54	4	5	26.5	8.5
	40st or more, 100st or less													50	33.5						
	125st or more, 200st or less													70	43.5	95					
	201st or more, 300st or less													85	51						
32	39st or less	M6 $\times 1.0$	12	95	28	40	117	7.3	56.4	95.4	68.4	-	-	40	28.5	75	64	5	6	34	8.5
	40st or more, 100st or less																				
	101st or more, 124st or less														43.5	105					
	125st or more, 200st or less													70	43.5						
40	39st or less	M6 x 1.0	12	95	28	40	117	7.3	56.4	117.4	90.4	-	-	40	28.5		64	5	6	34	8.5
	40st or more, 100st or less															75					
	101st or more, 124st or less															105					
	125st or more, 200st or less 201st or more, 300st or less													70 85	43.5 51						

Electric Actuator/Guide Rod Type Series LEYG Step Motor (Senore2 VDC
 Servo Motor (24 VDC)

Dimensions: In-line Motor

LEYG $\square \mathrm{L}$ (Ball bushing bearing)
Standard stroke: 50, 100, 200

LEYG \square M (Sliding bearing)
Standard stroke: 30, 50, 100

LEYG \square M, LEYG \square L Common

Size	Stroke range	$\frac{\text { Step motor Servo motor }}{\text { A }}$			B	C	DA	EA	EB	EH	EV	FA	FB	FC	G	GA	H	J	K	NA	NC	
16	39st or less	174.3		175	92	37	16	35	69	83	41.3	8	10.5	8.5	4.3	32	42.3	24.8	23	M 4×0.7	5.5	
	40st or more, 100st or less			52																		
	101st or more, 200st or less	194.3			195	112																82
25	39st or less	206.4		115.5		50	20	45	85	103	52.5	11	14.5	12.5	5.4	40.5	53.3	38.8	29	M5 x 0.8	6.5	
	40st or more, 100st or less	231.4			227.6	67.5																
	125st or more, 200st or less			140.5		84.5																
	201st or more, 300st or less					102																
	39st or less	228.9		-	128	55	25	60	101	123	64	12	18.5	16.5	5.4	50.5	68.3	38.3	30	M6 x 1.0	8.5	
32	40st or more, 100st or less					68																
	125st or more, 200st or less	258.9		-	158	85																
	201st or more, 300st or less					102																
40	39st or less	250.9		-	128	55	25	60	101	123	64	12	18.5	16.5	5.4	50.5	68.3	38.3	30	M6x 1.0	8.5	
	40st or more, 100st or less	280.9		-		68																
	101st or more, 124st or less				158																	
	125st or more, 200st or less 201st or more, 300st or less					$\begin{array}{\|r} \hline 85 \\ \hline 102 \\ \hline \end{array}$																
Size	Stroke range	OA	OB	P	Q	S	T	U	V	Step mot	$\frac{\text { tor Se }}{\text { VB }}$	$10 \text { motor }$	WA	WB	WC	X	XA	XB	YD	Z		
16	39st or less	M5 x 0.8	10	65	15	25	79	6.8	28	61.8	62.5		25	19	55	44	3	4	24	6.5		
	40st or more, 100st or less												40	26.5								
	101st or more, 200st or less												70	41.5	75							
25	39st or less	M6 x 1.0	12	80	18	30	95	6.8	42	63.4		59.6	35	26	70	54	4	5	26			
	40st or more, 100st or less												50	33.5						8.5		
	125st or more, 200st or less												70	43.5	95							
	201st or more, 300st or less												85	51								
32	39st or less	M6 1.0	12	95	28	40	117	7.3	56.4	68.4			40	28.5	75	64	5	6				
	405 or more, 100st or less												50	33.5					32	8.5		
	$125 s$ or more, 200st or less												70	43.5	105							
	201st or more, 300st or less												85	51								
40	39st or less	M6 x 1.0	12	95	28	40	117	7.5	56.4	90.4			40	28.5	75	64	5					
	40st or more, 100st or less																	6	32	8.5		
	101st or more, 124st or less												70	435	105							
	$\frac{125 s t ~ o r ~ m o r e, ~ 200 s t ~ o r ~ l e s s ~}{\text { 201st or more, 30st or less }}$												85	43.5								

Series LEYG

Step Motor (Servo/24 VDC)

Dimensions

Motor top mounting type 16

Connector

Step motor	Servo motor	
		$\stackrel{4}{\sim}$
$\xrightarrow{20}$	24	

Size	\mathbf{T}_{2}	\mathbf{X}_{2}
$\mathbf{1 6}$	7.5	83
$\mathbf{2 5}$	7.5	88.5
$\mathbf{3 2}$	7.5	98.5
$\mathbf{4 0}$	7.5	120.5

Motor cover material:
Synthetic resin

Dimensions

| Motor top mounting type | |
| :--- | :--- | :--- |
| With lock/motor cover: LEYG | 16 |
| 25 | |
| 40 | |
| 40 | |

Size	Stroke range	A	T2	X2	L	H	CV
16	100st or less	218.5	7.5	108	35	49.8	43
	101st or more, 300st or less	238.5					
25	100st or less	250	7.5	109	46	61.3	54.4
	101st or more, 300st or less	275					
32	100st or less	275	7.5	116.5	60	75.8	68.5
	101st or more, 300st or less	305					
40	100st or less	297	7.5	138.5	60	75.8	68.5
	101st or more, 300st or less	327					

Series LEYG

Step Motor (Servo/24 VDC)

Support Block

-Guide for support block application

When the stroke exceeds 100 mm and the mounting orientation is horizontal, the body will be bent. Mounting the support block is recommended. (Please order it separately from the models shown below.)

Support Block Model

LEYG-S016

CSize

$\mathbf{0 1 6}$	For size 16
$\mathbf{0 2 5}$	For size 25
$\mathbf{0 3 2}$	For size 32,40

Caution

Do not install the body using only a support block.
The support block should be used only for support.

Size	Model	Stroke range	EB	G	GA	OA	OB	ST	WC	X
16	LEYG-S016	100st or less	69	4.3	31.8	M5 x 0.8	10	16	55	44
		101st or more, 200st or less							75	
25	LEYG-S025	100st or less	85	5.4	40.3	M6 x 1.0	12	20	70	54
		101st or more, 300st or less							95	
32	LEYG-S032	100st or less	101	5.4	50.3	M6 x 1.0	12	22	75	64
40		101st or more, 300st or less							105	

[^6]

Series LEY/LEYG
 Electric Actuators/ Specific Product Precautions 1

Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smc.eu

Design/Selection

© Warning

1. Do not apply a load in excess of the operating limit.

Select a suitable actuator by load and allowable lateral load on the rod end. If the product is used outside of the operating limit, the eccentric load applied to the piston rod will be excessive and have adverse effects such as creating play on the sliding parts of the piston rod, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause failure.
3. When used as a stopper, select the LEYG series "Sliding bearing" for a stroke of $\mathbf{3 0} \mathbf{~ m m}$ or less.
4. When used as a stopper, fix the main body with a guide attachment ("Top mounting" or "Bottom mounting").

If the end of the actuator is used to fix the main body (end mounting), the excessive load acts on the actuator, which adversely affects the operation and life of the product.

Handling

© Caution

1. INP output signal

1) Positioning operation

When the product comes within the set range by step data [In position], the INP output signal will turn on.
Initial value: Set to [0.50] or higher.
2) Pushing operation

When the effective force exceeds step data [Trigger LV], the INP output signal will turn on.
Use the product within the specified range of [Pushing force] and [Trigger LV].
a) To ensure that the actuator pushes the workpiece with the set [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
b) When the [Pushing force] and [Trigger LV] are set less than the specified range, the INP output signal will turn on from the pushing start position.

Handling

© Caution

<Pushing Force and Trigger Level Range> Without load/With lateral load on rod end

Model	Pushing speed [mm/s]	Pushing force (Setting input value)	Model	Pushing speed [mm / s]	Pushing force (Setting input value)
LEY $\square 16 \square$	1 to 4	30% to 85%	LEY $\square 16 \square A$	1 to 4	40% to 95%
	5 to 20	35% to 85%		5 to 20	60% to 95%
	21 to 50	60% to 85%		21 to 50	80% to 95%
LEY $\square 25 \square$	1 to 4	20 \% to 65%	LEY $\square 25 \square A$	1 to 4	40% to 95%
	5 to 20	35% to 65%		5 to 20	60% to 95%
	21 to 35	50% to 65%		21 to 35	80% to 95%
LEY $\square 32 \square$	1 to 4	20% to 85%			
	5 to 20	35% to 85%			
	21 to 30	60% to 85%			
LEY $\square 40 \square$	1 to 4	20% to 65%			
	5 to 20	35% to 65%			
	21 to 30	50% to 65%			

<Set values for Vertical Upward Transfer Pushing Operation>

* For vertical loads (upward), set the pushing force to the maximum value shown below, and operate at the work load or less.

Model	LEY16 \square			LEY25 \square			LEY32 \square			LEY40 \square		
Lead	A	B	C	A	B	C	A	B	C	A	B	C
Work load [kg]	1	1.5	3	2.5	5	10	4.5	9	18	7	14	28
Pushing force	85 \%			65 \%			85 \%			65 \%		

Model	LEY16 $\square \mathbf{A}$			LEY25 $\square \mathbf{A}$			
Lead	A	B	C	A	B	C	
Work load $[\mathrm{kg}]$	1	1.5	3	1.2	2.5	5	
Pushing force	95%			95%			

Model	LEYG16 ${ }_{\text {M }} \square$			LEYG25 ${ }_{\text {M }} \square$			LEYG32M \square			LEYG40 ${ }_{\text {L }} \square$		
Lead	A	B	C	A	B	C	A	B	C	A	B	C
Work load [kg]	0.5	1	2.5	1.5	4	9	2.5	7	16	5	12	26
Pushing force	85 \%			65 \%			85 \%			65 \%		

Model	LEYG16 $\square \square$ A			LEYG25 $\square \mathbf{A}$			
Lead	A	B	C	A	B	C	
Work load $[\mathrm{kg}]$	0.5	1	2.5	0.5	1.5	4	
Pushing force	95%			95%			

2. When the pushing operation is used, be sure to set to [Pushing operation].
Also, do not hit the workpiece in positioning operation or in the range of positioning operation. It may malfunction.
3. Use the product within the specified pushing speed range for the pushing operation.
It may lead to damage and malfunction.
4. The moving force should be the initial value (LEY16 $\square / 25 \square / 32 \square / 40 \square: 100 \%$, LEY16A $\square: 150 \%$, LEY25A \square : 200 \%).

If the moving force is set below the initial value, it may cause an alarm.
5. The actual speed of this actuator is affected by the load.

Check the model selection section of the catalogue.
6. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
Otherwise, the origin can be displaced since it is based on detected motor torque.

Series LEY/LEYG

Electric Actuators/
 Specific Product Precautions 2

Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smc.eu

Handling

\triangle Caution

7. In pushing operation, set the product to a position of at least 2 mm away from a workpiece. (This position is referred to as a pushing start position.)
The following alarms may be generated and operation may become unstable.
a. "Posn failed" alarm is generated.

The product cannot reach a pushing start position due to variation in the target position.
b. "Pushing ALM" alarm is generated.

The product is pushed back from a pushing start position after starting to push.
8. Do not scratch or dent the sliding parts of the piston rod, by striking or attaching objects.
The piston rod and guide rod are manufactured to precise tolerances, even a slight deformation may cause malfunction.
9. When an external guide is used, connect it in such a way that no impact or load is applied to it.
Use a freely moving connector (such as a floating joint).
10. Do not operate by fixing the piston rod and moving the actuator body.

Excessive load will be applied to the piston rod, leading to damage to the actuator and reduced the life of the product. When an actuator is operated with one end fixed and the other free (ends tapped or flange type), a bending moment may act on the actuator due to vibration generated at the stroke end, which can damage the actuator. In such a case, install a mounting bracket to suppress the vibration of the actuator body or reduce the speed so that the actuator does not vibrate at the stroke end. Also, use a mounting bracket when moving the actuator body or when a long stroke actuator is mounted horizontally and fixed at one end.
11. Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.

This may cause deformation of the non-rotating guide, abnormal responses of the auto switch, play in the internal guide or an increase in the sliding resistance.
Refer to the table below for the approximate values of the allowable range of rotational torque.

Allowable rotational torque (N.m) or less	LEY16 $\square \square$	LEY25 $\square \square$	LEY32/40 $\square \square$

When screwing in a bracket or nut to the end of the piston rod, hold the flats of the rod end with a wrench (the piston rod should be fully retracted). Do not apply tightening torque to the non-rotating mechanism.

12. When rotational torque is applied to the end of the plate, use it within the allowable range. [Series LEYG] This may cause deformation of the guide rod and bushing, play in the guide or an increase in the sliding resistance.
13. For the pushing operation, use the product within duty ratio range below.
The duty ratio is a ratio at the time that can keep being pushed.

- Step motor (Servo/24 VDC)

LEY16 \square

Pushing force [\%]	Ambient temperature: $25^{\circ} \mathrm{C}$ or less		Ambient temperature: $40{ }^{\circ} \mathrm{C}$	
	Duty ratio [\%]	Continuous pushing time [minute]	Duty ratio [\%]	Continuous pushing time [minute]
40 or less	100	-	100	-
50			70	12
70			20	1.3
85			15	0.8

LEY25 \square

Pushing force [\%]	Ambient temperature: $25^{\circ} \mathrm{C}$ or less		Ambient temperature: $40{ }^{\circ} \mathrm{C}$Duty ratio [\%]	
	Duty ratio [\%]	Continuous pushing time [minute]		
65 or less	100	-	100	-

LEY32 \square

Pushing force [\%]	Ambient temperature: $25^{\circ} \mathrm{C}$ or less	Ambient temperature: $40^{\circ} \mathrm{C}$ Duty ratio [\%]	Continuous pushing time [minute]	Duty ratio [\%]
	Continuous pushing time [minute]			
85		-	100	-
		-	50	15

LEY40 \square

Pushing force [\%]	Ambient temperature: $25^{\circ} \mathrm{C}$ or less	Ambient temperature: $40^{\circ} \mathrm{C}$ Duty ratio [\%]		Continuous pushing time [minute]
	100	-	Duty ratio $[\%]$	Continuous pushing time [minute]

- Servo motor (24 VDC)

LEY16A \square

$\left.$| Pushing
 force [\%] | Ambient temperature: $25^{\circ} \mathrm{C}$ or less | Ambient temperature: $40^{\circ} \mathrm{C}$ | | Duty ratio
 [\%] |
| :---: | :---: | :---: | :---: | :---: | | Continuous pushing |
| :---: |
| time [minute] |$~$| Duty ratio |
| :---: |
| [\%] |\quad| Continuous pushing |
| :---: |
| time [minute] | \right\rvert\,

LEY25A \square

Pushing force [\%]	Ambient temperature: $25^{\circ} \mathrm{C}$ or less		Ambient temperature: $40{ }^{\circ} \mathrm{C}$	
	Duty ratio [\%]	Continuous pushing time [minute]	Duty ratio [\%]	Continuous pushing time [minute]
95 or less	100	-	100	-

14. When mounting the product, keep the 40 mm or more for bending the cable.

15. When mounting a bolt, workpiece or jig, hold the flats of the piston rod end with a wrench so that the piston rod does not rotate. The bolt should be tightened within the specified torque range.
This may cause abnormal responses of the auto switch, play in the internal guide or an increase in the sliding resistance.

Series LEY/LEYG
 Electric Actuators/ Specific Product Precautions 3

\triangle
Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smc.eu

Handling

\triangle Caution

16. When mounting the product and/or workpiece, tighten the mounting screws within the specified torque range.

Tightening with higher torque than the specified range may cause malfunction while the tightening with lower torque can cause the displacement of gripping position or dropping a workpiece.

<Series LEY>

Workpiece fixed/Rod end female thread

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$	End socket widh across flats $[\mathrm{mm}]$
LEY16	$\mathrm{M} 5 \times 0.8$	3.0	10	14
LEY25	$\mathrm{M} 8 \times 1.25$	12.5	13	17
LEY32/40	M 8×1.25	12.5	13	22

Workpiece fixed/Rod end male thread (When "Rod end male thread" is selected.)

Body fixed/Body bottom tapped style (When "Body bottom tapped" is selected.)

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$
LEY16	$\mathrm{M} 4 \times 0.7$	1.5	5.5
LEY25	$\mathrm{M} 5 \times 0.8$	3.0	6.5
LEY32/40	$\mathrm{M} 6 \times 1.0$	5.2	8.8

Body fixed/Rod side/Head side tapped style

<Series LEYG>
Workpiece fixed/Plate tapped style

Body fixed/Top mounting

Body fixed/Bottom mounting

Body fixed/Head side tapped style

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$
LEYG16L	$\mathrm{M} 4 \times 0.7$	1.5	7
LEYG25 $_{\mathrm{L}}^{\mathrm{M}}$	$\mathrm{M} 5 \times 0.8$	3.0	8
LEYG $_{40 \mathrm{~L}}^{32 \mathrm{~L}}$	$\mathrm{M} 6 \times 1.0$	5.2	10

17. Keep the flatness of the mounting surface within the following ranges when mounting the actuator body and workpiece.
Unevenness of a workpiece or base mounted on the body of the product may cause an increase in the sliding resistance.

| Model | Mounting position | | Flatness |
| :--- | :--- | :--- | :--- | :--- | :--- |
| LEY \square | Body/Body bottom | 0.02 mm | |
| or less | | | |$|$

18. When using auto switch with the guide rod type LEYG series, the following limits will be in effect. Please select the product while paying attention to this.

- Insert the auto switch from the front side with rod (plate) sticking out.
- For the parts hidden behind the guide attachment (Rod stick out side), the auto switch cannot be fixed.
- Consult with SMC when using auto switch on the rod stick out side.

Series LEY/LEYG
 Electric Actuators/ Specific Product Precautions 4

Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smc.eu

- Second Characteristics:

Degrees of protection against water

$\mathbf{0}$	Non-protected	-
$\mathbf{1}$	Protected against vertically falling water drops	Dripproof type 1
$\mathbf{2}$	Protected against vertically falling water drops when enclosure tilted up to 15	Dripproof type 2
$\mathbf{3}$	Protected against rainfall when enclosure tilted up to 60	Rainproof type
$\mathbf{4}$	Protected against splashing water	Splashproof type
$\mathbf{5}$	Protected against water jets	Water-jet- proof type
$\mathbf{6}$	Protected against powerful water jets	Powerful water- jet-proof type
$\mathbf{7}$	Protected against the effects of temporary immersion in water	Immersible type
$\mathbf{8}$	Protected against the effects of continuous immersion in water	Submersible type

Example) In the case of stipulated as IP65, we can know the degrees of protection is dust-tight and water-jet-proof on the grounds that the first characteristic numeral is " 6 " and the second characteristic numeral is " 5 " respectively, that gives it will not be adversely affected by direct water jets from any direction. (* The water jets which are " 5 " of the second characteristic numeral based on JIS C 0920 (2003) indicates a flow of water for 3 minutes at 12.5 L per minute.)

Maintenance

© Warning

1. Ensure that the power supply is stopped and the workpiece is removed before starting maintenance work or replacement of the product.

- Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months/ $250 \mathrm{~km} / 5$ million cycles*	\bigcirc	\bigcirc

* Select whichever comes sooner.
- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky
f. Crack on the back of the belt

Controller/Driver

Series LEC-G
Programless Type
Page 80

Step Motor (Servo/24 VDC) Series LECP1

Page 65

Pulse Input Type Page 87

Step Motor (Servo/24 VDC) Series LECPA

Servo Motor (24 VDC)

Series LECA6

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LE series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components
incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the LECA6 series (servo motor controller), EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 73 for the noise filter set. Refer to the LECA Operation Manual for installation.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

* When controller equipped type is selected when ordering the LE series, you do not need to order this controller.

The controller is sold as single unit after the

 compatible actuator is set.Confirm that the combination of the controller and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smc.eu

Specifications

Basic Specifications

Item	LECP6	LECA6
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)
Power supply ${ }^{\text {Note 1) }}$	Power voltage: 24 VDC ± 10 \% Note 2) [Including motor drive power, control power, stop, lock release]	Power voltage: 24 VDC ± 10 \% Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	11 inputs (Photo-coupler isolation)	
Parallel output	13 outputs (Photo-coupler isolation)	
Compatible encoder	Incremental A/B phase (800 pulse/rotation)	Incremental A/B (800 pulse/rotation)/Z phase
Serial communication	RS485 (Modbus protocol compliant)	
Memory	EEPROM	
LED indicator	LED (Green/Red) one of each	
Lock control	Forced-lock release terminal Note 3)	
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less	
Cooling system	Natural air cooling	
Operating temperature range $\left[{ }^{\circ} \mathrm{C}\right]$	0 to 40 (No freezing)	
Operating humidity range [\%RH]	90 or less (No condensation)	
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)	
Storage humidity range [\%RH]	90 or less (No condensation)	
Insulation resistance [M 2]	Between the housing and SG terminal: 50 (500 VDC)	
Weight [g]	150 (Screw mounting), 170 (DIN rail mounting)	

Note 1) Do not use the power supply of "inrush current prevention type" for the controller power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details.
Note 3) Applicable to non-magnetizing lock.

Step Data Input Type/Step Motor (Servo/24 vDC) Series LECP6
 Step Data Input Type/Servo Motor (24 vDC) Series LECA6

How to Mount

a) Screw mounting (LEC $\square 6 \square \square-\square$) (Installation with two M4 screws)

b) DIN rail mounting (LEC $\square 6 \square \square$ D- \square)
(Installation with the DIN rail)

Hook the controller on the DIN rail and press the lever of section \mathbf{A} in the arrow direction to lock it.

Note) When size 25 or more of the LE series are used, the space between the controllers should be 10 mm or more.

DIN rail
 AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions on page 67 for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
L	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting adapter

LEC-D0 (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type controller afterward.

Series LECP6
 Series LECA6

Dimensions

a) Screw mounting (LEC $\square 6 \square \square-\square$)

b) DIN rail mounting (LEC $\square \square \square \square$ D- \square)

Step Data Input Type／Step Motor（Servo／24 vDC）Series LECP6
 Step Data Input Type／Servo Motor（24 vDC）Series LECA6

Wiring Example 1

Power Supply Connector：CN1＊Power supply plug is an accessory．
CN1 Power Supply Connector Terminal for LECP6（PHOENIX CONTACT FK－MC0．5／5－ST－2．5）

Terminal name	Function	Details
0 V	Common supply（－）	M 24V terminal／C 24V terminal／EMG terminal／BK RLS terminal are common（－）．
M 24V	Motor power supply（＋）	Motor power supply（＋）supplied to the controller
C 24V	Control power supply（＋）	Control power supply（＋）supplied to the controller
EMG	Stop（＋）	Input（＋）for releasing the stop
BK RLS	Lock release（＋）	Input（＋）for releasing the lock

CN1 Power Supply Connector Terminal for LECA6（PHOENIX CONTACT FK－MC0．5／7－ST－2．5）

Terminal name	Function	Details
OV	Common supply（－）	M 24V terminal／C 24V terminal／EMG terminal／BK RLS terminal are common（－）．
M 24V	Motor power supply（＋）	Motor power supply（＋）supplied to the controller
C 24V	Control power supply（＋）	Control power supply（＋）supplied to the controller
EMG	Stop（＋）	Input（＋）for releasing the stop
BK RLS	Lock release（＋）	Input（＋）for releasing the lock
RG＋	Regenerative output 1	Regenerative output terminals for external connection （Not necessary to connect them in the combination with the LE series standard specifications．）
RG－	Regenerative output 2	而

Power supply plug for LECP6

Power supply plug for LECA6

Wiring Example 2

Parallel I／O Connector：CN5
＊When you connect a PLC etc．，to the CN5 parallel I／O connector，use the I／O cable（LEC－CN5－\square ）． ＊The wiring should be changed depending on the type of the parallel I／O（NPN or PNP）．

Wiring diagram

Input Signal

Name	Details
COM +	Connects the power supply 24 V for input／output signal
COM -	Connects the power supply 0 V for input／output signal
IN0 to IN5	Step data specified Bit No． （Input is instructed in the combination of IN0 to 5．）
SETUP	Instruction to return to origin
HOLD	Operation is temporarily stopped
DRIVE	Instruction to drive
RESET	Alarm reset and operation interruption
SVON	Servo ON instruction

LEC $\square 6$ P $\square \square-\square$（PNP）

Output Signal

Name	Details
OUT0 to OUT5	Outputs the step data no．during operation
BUSY	Outputs when the actuator is moving
AREA	Outputs within the step data area output setting range
SETON	Outputs when returning to origin
INP	Outputs when target position or target force is reached （Turns on when the positioning or pushing is completed．）
SVRE	Outputs when servo is on
＊ESTOP Note）	Not output when EMG stop is instructed
＊ALARM Note）	Not output when alarm is generated

Step Data Setting

1. Step data setting for positioning

In this setting, the actuator moves toward and stops at the target position.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

© : Need to be set.

: Need to be adjusted as required.
Step Data (Positioning)
-: Setting is not required.

Necessity	Item	Details
©	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
©	Speed	Transfer speed to the target position
©	Position	Target position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Set 0. (If values 1 to 100 are set, the operation will be changed to the pushing operation.)
-	Trigger LV	Setting is not required.
-	Pushing speed	Setting is not required.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Condition that turns on the INP output signal. When the actuator enters the range of [in position], the INP output signal turns on. (It is unnecessary to change this from the initial value.) When it is necessary to output the arrival signal before the operation is completed, make the value larger.

2. Step data setting for pushing

The actuator moves toward the pushing start position, and when it reaches that position, it starts pushing with the set force or less.
The following diagram shows the setting items and operation.
The setting items and set values for this operation are stated below.

Step Data (Pushing)		Need to be set. Need to be adjusted as required.
Necessity	Item	Details
©	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
\bigcirc	Speed	Transfer speed to the pushing start position
\bigcirc	Position	Pushing start position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Pushing force ratio is defined. The setting range differs depending on the electric actuator type. Refer to the Operation Manual for the electric actuator.
©	Trigger LV	Condition that turns on the INP output signal. The INP output signal turns on when the generated force exceeds the value. Trigger level should be the pushing force or less.
\bigcirc	Pushing speed	Pushing speed during pushing. When the speed is set fast, the electric actuator and work pieces might be damaged due to the impact when they hit the end, so this set value should be smaller. Refer to the Operation Manual for the electric actuator.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
©	In position	Transfer distance during pushing. If the transferred distance exceeds the setting, it stops even if it is not pushing. If the transfer distance is exceeded, the INP output signal will not turn on.

Step Data Input Type/Step Motor (Servo/24 vDc) Series LECP6
 Step Data Input Type/Servo Motor (24 vDc) Series LECA6

Signal Timing

Return to Origin

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuit.

* "OUT" is output when "DRIVE" is changed from ON to OFF.
(When power supply is applied, "DRIVE" or "RESET" is turned ON or
"*ESTOP" is turned OFF, all of the "OUT" outputs are OFF.)

HOLD

[^7] not stop even if HOLD signal is input.

[^8]
Series LECP6
 Series LECA6

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

LE - CP - $\quad$$\mathbf{1}$ Cable length (L) $[\mathrm{m}]$ $\mathbf{1}$ $\mathbf{3}$ $\mathbf{5}$ $\mathbf{8}$ A B C $\mathbf{8}^{*} 10^{*}$

* Produced upon receipt of order (Robotic cable only) With lock and sensor

Cable type

-	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{\mathrm{A}}^{8} \mathrm{~B}$ /Cable length: $\mathbf{8 m , 1 0 ~ m , 1 5 ~ m , ~} \mathbf{2 0 m}$

Step Data Input Type/Step Motor (Servo/24 vDc) Series LECP6
 Step Data Input Type/Servo Motor (24 vDC) Series LECA6

[Robotic cable for servo motor (24 VDC)]
LE $-\mathbf{C A} \boldsymbol{A} \mathbf{1}$
Cable length (L) [m]

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
\mathbf{A}	10^{*}
\mathbf{B}	15^{*}
\mathbf{C}	20^{*}

* Produced upon receipt of order

LE-CA- \square

Series LECP6
 Series LECA6

Option: I/O Cable

\section*{LEC-CN5-1
 Cable length (L) [m]
 | $\mathbf{1}$ | 1.5 |
| :---: | :---: |
| 3 | 3 |
| 5 | 5 |}

Connector pin no.	Insulation colour	Dot mark	Dot colour
A1	Light brown	\square	Black
A2	Light brown	\square	Red
A3	Yellow	\square	Black
A4	Yellow	\square	Red
A5	Light green	\square	Black
A6	Light green	\square	Red
A7	Grey	\square	Black
A8	Grey	\square	Red
A9	White	\square	Black
A10	White	\square	Red
A11	Light brown	$\square \square$	Black
A12	Light brown	$\square \square$	Red
A13	Yellow	$\square \square$	Black

Connector pin no.	Insulation colour	Dot mark	Dot colour
B1	Yellow	■ ■	Red
B2	Light green	$\square \square$	Black
B3	Light green	■ ■	Red
B4	Grey	$\square \square$	Black
B5	Grey	■ ■	Red
B6	White	■ ■	Black
B7	White	$\square \square$	Red
B8	Light brown	■ ■ ■	Black
B9	Light brown	■ ■ ■	Red
B10	Yellow	■■■	Black
B11	Yellow	■■■	Red
B12	Light green	■■■	Black
B13	Light green	■■■	Red
-	Shield		

Option: Noise Filter Set for Servo Motor (24 VDC)

LEC - NFA

Contents of the set: 2 noise filters (Manufactured by WURTH ELEKTRONIK: 74271222)

* Refer to the LECA6 series Operation Manual for installation.

How to Order

Contents

Description		Model*
(1)	Controller setting software (CD-ROM)	LEC-W2-S
(2)	Communication cable	LEC-W2-C
(3)	USB cable (between the PC and the communication cable)	LEC-W2-U

* Can be ordered separately.

Compatible Controller/Driver

Step data input type
 Pulse input type
 Series LECP6/Series LECA6
 Series LECPA

Teaching Box/LEC-T1

How to Order

Standard functions
 - Chinese character display
 - Stop switch is provided.

Option

- Enable switch is provided.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range $\left[{ }^{\circ} \mathbf{C}\right]$	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	• Setting of step data
Jog	• Jog operation - Return to origin
Test	- 1 step operation - Return to origin
Monitor	- Display of axis and step data no. • Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) • Displayed language setting (Ver. 2.**) • Setting of easy/normal mode • Setting step data and selection of items from easy mode monitor

Menu Operations Flowchart

Menu	Data
Data Monitor Jog Test ALM TB setting	Step data no.
	Setting of two items selected below
	Ver. 1.**:
	Position, Speed, Force, Acceleration, Deceleration
	Ver. 2.**:
	Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD,
	Trigger LV, Pushing speed, Moving force, Area 1, Area 2, In position

Normal Mode

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output)
Monitor	- Drive monitor - Output signal monitor - Input signal monitor - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the controller which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to controller Loads the data which is saved in the teaching box to the controller which is being used for communication. - Delete the saved data. - File protection (Ver. 2.**)
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

Menu	Step data	$\stackrel{\text { N }}{ }$
Step data	Step data no.	$\stackrel{\text { ¢ }}{ }$
Parameter	Movement MOD	흘
Monitor	Speed	-
Test	Position	O
ALM	Acceleration	-
File	Deceleration	込
TB setting	Pushing force	흘
Reconnect	Trigger LV	-
	Pushing speed	¢

Area 1, 2 In position	Basic setting
Parameter	
Basic ORIG	ORIG setting
Monitor	DRV monitor
Drive Output signal Input signal	Position, Speed, Torque Step no. Last step no.
Output terminal Input terminal	- Output signal monitor
Test	- Input signal monitor
JOG/MOVE Return to ORIG	-Output terminal monitor
Test drive Forced output	Input terminal monitor
ALM	Active alarm display Alarm reset
Status ALM Log record	
File	ALM Log record display
Data saving	Log entry display

File deletion
File protection (Ver. 2.**)

TB setting

Easy/Normal
Language
Backlight
LCD contrast
Beep
Max. connection axis
Password
Distance unit
Reconnect

Dimensions

		No.	Description	Function
		1	LCD	A screen of liquid crystal display (with backlight)
	(4)	2	Ring	A ring for hanging the teaching box
		3	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
		4	Stop switch guard	A guard for the stop switch
		5	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
	事	6	Key switch	Switch for each input
		7	Cable	Length: 3 meters
$\text { (7) } 8$		8	Connector	A connector connected to CN4 of the controller

Gateway Unit Series LEC-G

How to Order

\triangle Caution

[CE-compliant products] EMC compliance was tested by combining the electric actuator LE series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products] When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Specifications

Model			LEC-G	GMJ2 \square	LEC-GDN1 \square	LEC-GPR1 \square	LEC-GEN1 \square
Communication specifications	Applicable system	Fieldbus		-Link	DeviceNet ${ }^{\text {TM }}$	PROFIBUS DP	EtherNet/IP ${ }^{\text {TM }}$
		Version Note 1)		r. 2.0	Release 2.0	V1	Release 1.0
	Communication speed [bps]		$\begin{array}{r} 156 \mathrm{k} / 62 \\ \mathrm{I} \\ \hline \mathrm{M} \end{array}$	$\begin{aligned} & 25 \mathrm{k} / 2.5 \mathrm{M} \\ & \mathrm{M} / 10 \mathrm{M} \end{aligned}$	125 k/250 k/500 k	$9.6 \mathrm{k} / 19.2 \mathrm{k} / 45.45 \mathrm{k} /$ $93.75 \mathrm{k} / 187.5 \mathrm{k} / 500 \mathrm{k} /$ $1.5 \mathrm{M} / 3 \mathrm{M} / 6 \mathrm{M} / 12 \mathrm{M}$	$10 \mathrm{M} / 100 \mathrm{M}$
	Configuration file ${ }^{\text {Note 2) }}$			-	EDS file	GSD file	EDS file
	1/O occupation area		4 stations occupied (8 times setting)	Input 896 points 108 words Output 896 points 108 words	Input 200 bytes Output 200 bytes	Input 57 words Output 57 words	Input 256 bytes Output 256 bytes
	Power supply for communication Power supply voltage [V] ${ }^{\text {Note } 6)}$ Internal current consumpption [mA] Col			-	11 to 25 VDC	-	-
				-	100	-	-
	Communication connector specifications		Connector	(Accessory)	Connector (Accessory)	D-sub	RJ45
	Terminating resistor		Not in	ncluded	Not included	Not included	Not included
Power supply voltage [V] ${ }^{\text {Note } 6)}$			24 VDC ± 10 \%				
Current consumption [mA]	Not connected to teaching box		200				
	Connected to teaching box		300				
EMG output terminal			30 VDC 1 A				
Controller specifications	Applicable controllers		Series LECP6, Series LECA6				
	Communication speed [bps] ${ }^{\text {Note } 3)}$		$115.2 \mathrm{k} / 230.4 \mathrm{k}$				
	Max. number of connectable controllers ${ }^{\text {Note 4) }}$			12	8 Note 5)	5	12
Accessories			Power supply connector, communication connector			Power supply connector	
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 40 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]			-10 to 60 (No freezing)				
Storage humidity range [\%RH]			90 or less (No condensation)				
Weight [g]			200 (Screw mounting), 220 (DIN rail mounting)				

Note 1) Please note that the version is subject to change.
Note 2) Each file can be downloaded from the SMC website, http://www.smc.eu
Note 3) When using a teaching box (LEC-T1- \square), set the communication speed to 115.2 kbps .
Note 4) A communication response time for 1 controller is approximately 30 ms .
Refer to "Communication Response Time Guideline" for response times when several controllers are connected.
Note 5) For step data input, up to 12 controllers connectable.
Note 6) When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Communication Response Time Guideline

Response time between gateway unit and controllers depends on the number of controllers connected to the gateway unit． For response time，refer to the graph below．

＊This graph shows delay times between gateway unit and controllers． Fieldbus network delay time is not included．

Dimensions

Screw mounting（LEC－G $\square \square \square$ ）

Applicable Fieldbus protocol：CC－Link Ver． 2.0

Applicable Fieldbus protocol：PROFIBUS DP

Applicable Fieldbus protocol：DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol：EtherNet／IPTM

Series LEC-G

Dimensions

DIN rail mounting (LEC-G $\square \square \square D$)

Applicable Fieldbus protocol: CC-Link Ver. 2.0

* Mountable on DIN rail (35 mm)

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol: EtherNet/IPTM

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions above for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

[^9]
Programless Controller Series LECP1

How to Order

Con controller and the actuator is correct.

* Refer to the Operation Manual for using the products. Please download it via our website, http://www.smc.eu

The controller is sold as

 single unit after the compatible actuator is set.| $\begin{aligned} & \Gamma \\ & 0 \\ & \times \\ & \hline \end{aligned}$ | |
| :---: | :---: |
| | |

Item	LECP1
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power supply voltage: 24 VDC ± 10 \%, Max. current consumption: 3 A (Peak 5A) Note 2) [Including the motor drive power, control power supply, stop, lock release]
Parallel input	6 inputs (Photo-coupler isolation)
Parallel output	6 outputs (Photo-coupler isolation)
Stop points	14 points (Position number 1 to 14(E))
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
7-segment LED display Note 3)	1 digit, 7-segment display (Red) Figures are expressed in hexadecimal ("10" to "15" in decimal number are expressed as "A" to "F")
Lock control	Forced-lock release terminal Note 4)
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [$\left.{ }^{\circ} \mathrm{C}\right]$	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M 2]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	130 (Screw mounting), 150 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the controller input power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the each actuator's operation manual etc. for details.
Note 3) " 10 " to " 15 " in decimal number are displayed as follows in the 7 -segment LED.

Note 4) Applicable to non-magnetizing lock.

Controller Details

No.	Display	Description	Details
(1)	PWR	Power supply LED	Power supply ON/Servo ON : Green turns on Power supply ON/Servo OFF: Green flashes
(2)	ALM	Alarm LED	With alarm : Red turns on Parameter setting : Red flashes
(3)	-	Cover	Change and protection of the mode switch (Close the cover after changing switch)
(4)	-	FG	Frame ground (Tighten the bolt with the nut when mounting the controller. Connect the ground wire.)
(5)	-	Mode switch	Switch the mode between manual and auto.
(6)	-	7-segment LED	Stop position, the value set by (8) and alarm information are displayed.
(7)	SET	Set button	Decide the settings or drive operation in Manual mode.
(8)	-	Position selecting switch	Assign the position to drive (1 to 14), and the origin position (15).
(9)	MANUAL	Manual forward button	Perform forward jog and inching.
(10)		Manual reverse button	Perform reverse jog and inching.
(11)		Forward speed switch	16 forward speeds are available.
(12)		Reverse speed switch	16 reverse speeds are available.
(13)		Forward acceleration switch	16 forward acceleration steps are available.
(14)		Reverse acceleration switch	16 reverse acceleration steps are available.
(15)	CN1	Power supply connector	Connect the power supply cable.
(16)	CN2	Motor connector	Connect the motor connector.
(17)	CN3	Encoder connector	Connect the encoder connector.
(18)	CN4	I/O connector	Connect I/O cable.

How to Mount

Controller mounting shown below.

1. Mounting screw (LECP1 $\square \square-\square$)
 (Installation with two M4 screws)

2. Grounding

Tighten the bolt with the nut when mounting the ground wire as shown below.

Note) When size 25 or more of the LE series are used, the space between the controllers should be 10 mm or more.

© Caution

- M4 screws, cable with crimping terminal and tooth lock washer are not included. Be sure to carry out grounding earth in order to ensure the noise tolerance.
- Use a watchmaker's screwdriver of the size shown below when changing position switch (8) and the set value of the speed/acceleration switch (11) to (14).

Size
End width L: 2.0 to $2.4[\mathrm{~mm}]$
End thickness W: 0.5 to $0.6[\mathrm{~mm}]$

Magnified view of the end of the screwdriver

Dimensions

DIN rail mounting (LEC $\square 1 \square \square \mathrm{D}-\square$)

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5	273
No.	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40		
\mathbf{L}	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5		

DIN rail mounting adapter

LEC-1-D0 (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type controller afterwards.

Screw mounting (LEC $\square 1 \square \square-\square$)

Series LECP1

Wiring Example 1

Power Supply Connector: CN1 * When you connect a CN1 power supply connector, use the power supply cable (LEC-CK1-1). * Power supply cable (LEC-CK1-1) is an accessory.

CN1 Power Supply Connector Terminal for LECP1

Terminal name Cable colour	Function	Details	
0V	Blue	Common supply (-)	M 24V terminal/C 24V terminal/BK RLS terminal are common (-).
M 24V	White	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Brown	Control power supply (+)	Control power supply (+) supplied to the controller
BK RLS	Black	Lock release (+)	Input (+) for releasing the lock

Power supply cable for LECP1 (LEC-CK1-1)

Wiring Example 2

Parallel I/O Connector: CN4

* When you connect a PLC etc., to the CN4 parallel I/O connector, use the I/O cable (LEC-CK4- \square).
* The wiring should be changed depending on the type of the parallel I/O (NPN or PNP).

NPN

		Power supply 24 VDC for I/O signal
CN4		
COM +	1	\square
COM-	2	
OUT0	3	Load -
OUT1	4	Load -
OUT2	5	Load-
OUT3	6	-Load -
BUSY	7	Load
ALARM	8	Load
INO	9	
IN1	10	
IN2	11	
IN3	12	
RESET	13	
STOP	14	

Input Signal

Name	Details			
COM+	Connects the power supply 24 V for input/output signal			
COM-	Connects the power supply 0 V for input/output signal			
IN0 to IN3	- Instruction to drive (input as a combination of INO to IN3) - Instruction to return to origin (INO to IN3 all ON simultaneously) Example - (instruction to drive for position no. 5)			
	IN3	IN2	IN1	IN0
	OFF	ON	OFF	ON
RESET	Alarm reset and operation interruption During operation: deceleration stop from position at which signal is input (servo ON maintained) While alarm is active: alarm reset			
STOP	Instruction to stop (after maximum deceleration stop, servo OFF)			

Input Signal [INO - IN3] Position Number Chart O: OFF ©: ON

Position number	IN3	IN2	IN1	IN0
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	\bigcirc	-	-	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10 (A)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 (B)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12 (C)	-	\bigcirc	\bigcirc	\bigcirc
13 (D)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14 (E)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Return to origin	\bigcirc	\bigcirc	\bigcirc	\bigcirc

PNP

Output Signal

Name	Details			
OUT0 to OUT3	Turns on when the positioning or pushing is completed (Output is instructed in the combination of OUTO to 3.) Example - (operation complete for position no. 3)			
	OUT3	OUT2	OUT1	OUT0
	OFF	OFF	ON	ON
BUSY	Outputs when the actuator is moving			
*ALARM Note)	Not output when alarm is active or servo OFF			

Note) Signal of negative-logic circuit (N.C.)

Output Signal [OUTO - OUT3] Position Number Chart O: OFF ©: ON

Position number	OUT3	OUT2	OUT1	OUT0
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	-	\bigcirc	\bigcirc
6	\bigcirc	-	\bigcirc	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10 (A)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 (B)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12 (C)	-	\bigcirc	\bigcirc	\bigcirc
13 (D)	-	-	\bigcirc	\bigcirc
14 (E)	\bigcirc	-	\bigcirc	\bigcirc
Return to origin	\bigcirc	-	\bigcirc	\bigcirc

Signal Timing

(1) Return to Origin

* "*ALARM" is expressed as negative-logic circuit.

(2) Positioning Operation

(3) Cut-off Stop (Reset Stop)

(4) Stop by the STOP Signal

(5) Alarm Reset

* "*ALARM" is expressed as negative-logic circuit.

Series LECP1

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

LE-CP - 1		
Cable length (L) [m]		
1	1.5	
3	3	
5	5	
8	8*	
A	10*	
B	$15 *$	
C	20*	
* Produced upon receipt of order (Robotic cable only)		
Cable type		

-	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{5}^{1} / C$ able length: $1.5 \mathrm{~m}, \mathbf{3} \mathbf{~ m}, 5 \mathrm{~m}$ (Terminal no.)

Actuator side

Controller side
Connector C $\xrightarrow[(14.2)]{\rightarrow}$

 (* Produced upon receipt of order)

Controller side

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

 (* Produced upon receipt of order)

Options

[Power supply cable]

LEC-CK1-1

Terminal name	Covered colour	Function
OV	Blue	Common supply (-)
M 24V	White	Motor power supply (+)
C 24V	Brown	Control power supply (+)
BK RLS	Black	Lock release (+)

(1500)

* Conductor size: AWG20

Pulse Input Type Series LECPA

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LE series and the LECPA series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the LECPA series (step motor driver), EMC compliance was tested by installing a noise filter set (LEC-NFA).
Refer to page 87 for the noise filter set. Refer to the LECPA Operation Manual for installation.
[UL-compliant products]
When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Part number except cable specifications and actuator options
Example: Enter "LEY16B-100"
for the LEY16B-100B-R1AN1D.
BC
Blank controller Note)
Note) The dedicated software (LEC-BCW) is required.

* When controller equipped type is selected when ordering the LE series, you do not need to order this driver. * When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) separately.

The driver is sold as single unit after the compatible actuator is set.

Confirm that the combination of the driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smc.eu

Precautions on blank controller

 (LECPA $\square \square$-BC)Blank controller is a controller to which the customer can write the data of the actuator to be combined and used. Use the dedicated software (LEC-BCW) for data writing.

- Please download the dedicated software (LEC-BCW) via our website.
- Order the controller setting kit (LEC-W2) separately to use this software.

SMC website
http://www.smc.eu

Specifications

Item	LECPA
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power voltage: 24 VDC ± 10 \% Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	5 inputs (Except photo-coupler isolation, pulse input terminal, COM terminal)
Parallel output	9 outputs (Photo-coupler isolation)
Pulse signal input	Maximum frequency: 60 kpps (Open collector), 200 kpps (Differential) Input method: 1 pulse mode (Pulse input in direction), 2 pulse mode (Pulse input in differing directions)
Compatible encoder	Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
Lock control	Forced-lock release terminal Note 3)
Cable length [m]	I/O cable: 1.5 or less (Open collector), 5 or less (Differential), Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M]]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	120 (Screw mounting), 140 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the driver power supply. When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details.
Note 3) Applicable to non-magnetizing lock.

How to Mount

b) DIN rail mounting (LECPA $\square \square \mathrm{D}-\square$) (Installation with the DIN rail)

DIN rail is locked.

Hook the driver on the DIN rail and press the lever of section \mathbf{A} in the arrow direction to lock it.

Note) The space between the drivers should be 10 mm or more.

DIN rail
AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions on page 89 for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting adapter

LEC-2-D0 (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type driver afterward.

Series LECPA

Dimensions
a) Screw mounting (LECPA $\square \square-\square$)

Wiring Example 1

Power Supply Connector: CN1 * Power supply plug is an accessory.
CN1 Power Supply Connector Terminal for LECPA (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M 24V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the driver
C 24V	Control power supply (+)	Control power supply (+) supplied to the driver
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

Power supply plug for LECPA

Wiring Example 2

Parallel I/O Connector: CN5 * When you connect a PLC etc., to the CN5 parallel I/O connector, use the I/O cable (LEC-CL5-ם).

LECPAN $\square \square-\square$ (NPN)

CN5			F		Power supply 24 VDC $\pm 10 \%$ for I/O signal
Terminal name	Function	Pin no.			
COM+	24 V	1			
COM-	0 V	2			
NP+	Pulse signal	3	:		
NP-	Pulse signal	4	!		
				Note 1)	
PP+	Pulse signal	5	!		
PP-	Pulse signal	6			
SETUP	Input	7	[
RESET	Input	8	: \int		
SVON	Input	9	-		
			:		
CLR	Input	10			
TL	Input	11	[
TLOUT	Output	12	!	Load	
WAREA	Output	13	[Load	
BUSY	Output	14	,	Load	
SETON	Output	15	: $\quad 1$	Load	
INP	Output	16	-	Load	
SVRE	Output	17	:	Load	
*ESTOP ${ }^{\text {Note 2) }}$	Output	18	+	Load	
*ALARM ${ }^{\text {Note 2) }}$	Output	19	!	Load	
AREA	Output	20		Load	
	FG	$\begin{array}{\|c\|} \text { Round terminal } \\ 0.5-5 \end{array}$			

Note 1) For pulse signal wiring method, refer to "Pulse Signal Wiring Details".
Note 2) Output when the power supply of the driver is ON. (N.C.)
Input Signal

Name	Details
COM +	Connects the power supply 24 V for input/output signal
COM -	Connects the power supply 0 V for input/output signal
SETUP	Instruction to return to origin
RESET	Alarm reset
SVON	Servo ON instruction
CLR	Deviation reset
TL	Instruction to pushing operation

LECPAP $\square \square-\square$ (PNP)

CN5					Power supply 24 VDC $\pm 10 \%$ for I/O signal
Terminal name	Function	Pin no.			
COM +	24 V	1			\bigcirc
COM-	0 V	2			
NP+	Pulse signal	3			
NP-	Pulse signal	4			
PP+	Pulse signal	5		Note 1)	
PP-	Pulse signal	6			
SETUP	Input	7			
RESET	Input	8			
SVON	Input	9			
CLR	Input	10			
TL	Input	11			
tlout	Output	12		Load	
WAREA	Output	13		Load	
BUSY	Output	14		Load	
SETON	Output	15		Load	
INP	Output	16		Load	
SVRE	Output	17		Load	
*ESTOP ${ }^{\text {Note 2) }}$	Output	18		Load	
*ALARM ${ }^{\text {Nota } 21}$	Output	19		Load	
AREA	Output	20		Load	
	FG	$\begin{array}{\|c\|} \hline \text { Round temminal } \\ 0.5-5 \\ \hline \end{array}$			

Output Signal

Name	Details
BUSY	Outputs when the actuator is operating
SETON	Outputs when returning to origin
INP	Outputs when target position is reached
SVRE	Outputs when servo is on
*ESTOP Note 3)	Not output when EMG stop is instructed
*ALARM Note 3)	Not output when alarm is generated
AREA	Outputs within the area output setting range
WAREA	Outputs within W-AREA output setting range
TLOUT	Outputs during pushing operation

Note 3) Signal of negative-logic circuit ON (N.C.)

Pulse Signal Wiring Details

- Pulse signal output of positioning unit is differential output

- Pulse signal output of positioning unit is open collector output

Pulse signal power supply

Note) Connect the current limit resistor R in series to correspond to the pulse signal voltage.

Pulse signal power supply voltage	Current limit resistor R specifications	Current limit resistor part no.
$24 \mathrm{VDC} \pm 10 \%$	$3.3 \mathrm{k} \Omega \pm 5 \%$ $(0.5 \mathrm{~W}$ or more)	LEC-PA-R-332
$5 \mathrm{VDC} \pm 5 \%$	$390 \Omega \pm 5 \%$ $(0.1 \mathrm{~W}$ or more $)$	LEC-PA-R-391

Series LECPA

Signal Timing

Return to Origin

If the actuator is within the "in position" range of the basic parameter, INP will turn ON, but if not, it will remain OFF.

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuit.

Positioning Operation

Pushing Operation

Note) If pushing operation is stopped when there is no pulse deviation, the moving part of the actuator may pulsate.

Alarm Reset

[^10]
Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

LE - CP - T
Cable length (L) [m]
$\mathbf{1}$ 1.5 $\mathbf{3}$ 3 $\mathbf{5}$ 5 $\mathbf{8}$ 8^{*} A 10^{*} B 15^{*} C 20^{*} *Produced upon receipt of order (Robotic cable only) Cable type

LE-CP- ${ }_{5}^{3} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

LE-CP- ${ }_{A}^{8} \mathrm{C} /$ Cable length: $\mathbf{8 m}, 10 \mathrm{~m}, 15 \mathrm{~m}, \mathbf{2 0 ~ m}$
(* Produced upon receipt of order)

Driver side

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

-	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{5}^{1} / C a b l e ~ l e n g t h: ~ 1.5 ~ m, ~ 3 ~ m, ~ 5 ~ m ~$

LE-CP- ${ }_{A}^{8}$ B/Cable length: $8 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$ (* Produced upon receipt of order)

Series LECPA

Options

[I/O cable]

* Pulse input usable only with differential. Only 1.5 m cables usable with open collector.

[Noise filter set]

Step motor driver (Pulse input type)

LEC-NFA

Contents of the set: 2 noise filters
(Manufactured by WURTH ELEKTRONIK: 74271222)

[^11]| Pin no. | Insulation colour | Dot mark | Dot colour |
| :---: | :---: | :---: | :---: |
| 1 | Light brown | \square | Black |
| 2 | Light brown | \square | Red |
| 3 | Yellow | \square | Black |
| 4 | Yellow | \square | Red |
| 5 | Light green | \square | Black |
| 6 | Light green | \square | Red |
| 7 | Grey | \square | Black |
| 8 | Grey | \square | Red |
| 9 | White | \square | Black |
| 10 | White | \square | Red |
| 11 | Light brown | ■ | Black |

Pin no.	Insulation colour	Dot mark	Dot colour
12	Light brown	■	Red
13	Yellow	■	Black
14	Yellow	■■	Red
15	Light green	■	Black
16	Light green	■	Red
17	Grey	■	Black
18	Grey	■	Red
19	White	■	Black
20	White	■	Red
$\begin{array}{\|c\|} \hline \text { Round teminal } \\ 0.5-5 \\ \hline \end{array}$	Green		

[Current limit resistor]

This optional resistor (LEC-PA-R- \square) is used when the pulse signal output of the positioning unit is open collector output.

LEC-PA-R-ㅁ

Current limit resistor

Symbol	Resistance	Pulse signal power supply voltage
332	$3.3 \mathrm{k} \Omega \pm 5 \%$	$24 \mathrm{VDC} \pm 10 \%$
391	$390 \Omega \pm 5 \%$	$5 \mathrm{VDC} \pm 5 \%$

* Select a current limit resistor that corresponds to the pulse signal power supply voltage
For the LEC-PA-R- \square, two pieces are shipped as a set.

How to Order

* Can be ordered separately.

Compatible Controller/Driver

Step data input type
 Pulse input type
 Series LECP6/Series LECA6
 Series LECPA

How to Order

Standard functions
 - Chinese character display - Stop switch is provided.

Option

- Enable switch is provided.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range $\left[{ }^{\circ} \mathrm{C}\right]$	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight $[\mathrm{g}]$	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation Note 1) - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**)
- Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor	

Menu Operations Flowchart

Menu	Data	
Data Monitor Jog Test ALM TB setting	Step data no. Setting of two items selected below Ver. 1.**: Position, Speed, Force, Acceleration, Deceleration Ver. 2.**: Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD, Trigger LV, Pushing speed, Moving force, Area 1, Area 2, In position	

Note 1) Not compatible with the LECPA.
Japanese/English (Ver. 2.**)
Easy/Normal
Set item

Normal Mode

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive Note 1) (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output) Note 2)
Monitor	- Drive monitor - Output signal monitor Note 2) - Input signal monitor Note 2) - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the driver which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to driver Loads the data which is saved in the teaching box to the driver which is being used for communication. - Delete the saved data. - File protection (Ver. 2.**)
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

File deletion
File protection (Ver. 2.**)
TB setting
Easy/Normal
Language
Backlight
LCD contrast
Beep
Max. connection axis
Password
Distance unit
Reconnect

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected opera- tion) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the driver

5 types of communication protocols

New (a) IO-Link
EtherCAT. ${ }^{*}$

$\frac{\text { PROFTM }}{\text { - }}$

Deviceilet

Etherivet/IP

Application Communication protocol
EtherCAT.
EtherCAT. Etheri'et/IP Etheri'et/IP Devicei'et © IO-LinkCan be additionallyinstalled in anexisting network

<Applicable electric actuators>

Slider type
Series LEF

Two types of operation command

Step no. defined operation: Operate using the preset step data in the controller.
Numerical data defined operation: The actuator operates using values such as position and speed from the PLC.

Numerical monitoring available

Numerical information, such as the current speed, current position, and alarm codes, can be monitored on the PLC.

Transition wiring of communication cables

Two communication ports are provided.

* For the DeviceNet ${ }^{\text {TM }}$ type, transition wiring is possible using a branch connector.
* 1 to 1 in the case of IO-Link

IO-Link communication can be performed.

The data storage function eliminates the need for troublesome resetting of step data and parameters when changing over the controller.

IO-Link is an open communication interface technology between the sensor/actuator and the I/O terminal that is an international standard, IEC61131-9.

Application

Step Motor Controller Series JXCE1/91/P1/D1/L1

System Construction

Step Motor Controller Series JXCE1/91/P1/D1/L1 ($\epsilon_{\text {ơ4 }}$

How to Order

Actuator + Controller

Actuator type

Refer to "How to Order" in the actuator catalogue available at www.smc.eu. For compatible actuators, refer to the table below. Example: LEY16B-100B-R1C917

Electric Actuator/Rod Series LEY
Electric Actuator/Guide Rod Series LEYG
Electric Actuator/Slider Series LEF
Electric Slide Table Series LES/LESH
Electric Rotary Table Series LER
Electric Actuator/Guide Rod Slider Series LEL
Electric Actuator/Miniature Series LEPY/LEPS
Electric Gripper Series LEH
Electric Actuator/Low-Profile Slider Series LEM

* Only the step motor type is applicable.

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LE series and the JXCE1/91/ P1/D1/L1 series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.

Actuator cable type/length 6

-	Without cable
S1	Standard cable 1.5 m
S3	Standard cable 3 m
S5	Standard cable 5 m
R1	Robotic cable 1.5 m
R3	Robotic cable 3 m
R5	Robotic cable 5 m
R8	Robotic cable $8 \mathrm{~m}^{* 1}$
RA	Robotic cable $10 \mathrm{~m}^{* 1}$
RB	Robotic cable $15 \mathrm{~m}^{* 1}$
RC	Robotic cable $20 \mathrm{~m}^{* 1}$

*1 Produced upon receipt of order (Robotic cable only)

* The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable.

Refer to the Web

Catalogue.

For single axis ${ }^{\text {d }}$

protocol	
E	EtherCAT® $^{\circledR}$
$\mathbf{9}$	EtherNet/IP $^{\mathrm{TM}}$
P	PROFINET
D	DeviceNet $^{\text {TM }}$
\mathbf{L}	IO-Link

- Mounting

$\mathbf{7}$	Screw mounting
$\mathbf{8 * 1}$	DIN rail

*1 The DIN rail is not included. It must be ordered separately. (Refer to page 105.)

Option

-	Without option
\mathbf{S}	With straight type DeviceNet™ communication plug for JXCD1
\mathbf{T}	With T-branch type DeviceNet ${ }^{T M}$ communication plug for JXCD1

* Select "Nil" for anything other than JXCD1.

Controller

Precautions for blank controllers
(JXC $\square 1 \square \square-B C$)
A blank controller is a controller to which the customer can write the data of the actuator it is to be combined and used with. Use the dedicated software (JXC-BCW) for data writing.

- Please download the dedicated software (JXC-BCW) via our website.
- Order the controller setting kit (LEC-W2) separately to use this software.

SMC website
http://www.smc.eu

JXCD17 T-LEY16B-100

Communication ${ }^{\circ}$ protocol

\mathbf{E}	EtherCAT $^{\circledR}$
$\mathbf{9}$	EtherNet/IP $^{\mathrm{TM}}$
\mathbf{P}	PROFINET 2
\mathbf{D}	DeviceNet $^{\mathrm{TM}}$
\mathbf{L}	IO-Link

For single axis
Mounting ${ }^{\circ}$

$\mathbf{7}$	Screw mounting
$\mathbf{8}^{* 1}$	DIN rail

*1 The DIN rail is not included. It must be ordered separately.
(Refer to page 105.)

Actuator part number

Without cable specifications and actuator options Example: Enter "LEY16B-100" for the LEY16B-100B-S1 \square.

BC Blank controller*1
*1 Requires dedicated software (JXC-BCW)

- Option

-	Without option
\mathbf{S}	With straight type DeviceNet ${ }^{\text {TM }}$ communication plug for JXCD1
\mathbf{T}	With T-branch type DeviceNet $^{T \mathrm{M}}$ communication plug for JXCD1

* Select "Nil" for anything other than JXCD1.

When selecting an electric actuator, refer to the model selection chart of each actuator. Also, for the "Speed-Work Load" graph of the actuator, refer to the LECP6 section on the model selection page of the electric actuators Web Catalogue.

[^12]
Step Motor Controller Series JXCE1/91/P1/D1/L1

Specifications

Model			JXCE1	JXC91	JXCP1	JXCD1	JXCL1
Network			EtherCAT ${ }^{\circledR}$	EtherNet/IP ${ }^{\text {TM }}$	PROFINET	DeviceNet ${ }^{\text {TM }}$	IO-Link
Compatible motor			Step motor (Servo/24 VDC)				
Power supply			Power voltage: 24 VDC ± 10 \%				
Current consumption (Controller)			200 mA or less	130 mA or less	200 mA or less	100 mA or less	100 mA or less
Compatible encoder			Incremental A/B phase (800 pulse/rotation)				
		Protocol	EtherCAT ${ }^{\text {®*2 }}$	EtherNet/IPTM*2	PROFINET*2	DeviceNet ${ }^{\text {TM }}$	IO-Link
	system	Version*1	Conformance Test Record V.1.2.6	Volume 1 (Edition 3.14) Volume 2 (Edition 1.15)	Specification Version 2.32	Volume 1 (Edition 3.14) Volume 3 (Edition 1.13)	Version 1.1 Port Class A
	Communication speed		$100 \mathrm{Mbps*2}$	$\begin{array}{\|c\|} \hline 10 / 100 \mathrm{Mbps}^{* 2} \\ \text { (Automatic } \text { negotiation) } \\ \hline \end{array}$	100 Mbps*2	125/250/500 kbps	$\begin{gathered} 230.4 \mathrm{kbps} \\ \text { (COM3) } \end{gathered}$
	Configuration file*3		ESI file	EDS file	GSDML file	EDS file	IODD file
	I/O occupation area		Input 20 bytes Output 36 bytes	Input 36 bytes Output 36 bytes	Input 36 bytes Output 36 bytes	Input 4, 10, 20 bytes Output 4, 12, 20, 36 bytes	Input 14 bytes Output 22 bytes
	\% Terminating resistor		Not included				
Memory			EEPROM				
LED indicator			PWR, RUN, ALM, ERR	PWR, ALM, MS, NS	PWR, ALM, SF, BF	PWR, ALM, MS, NS	PWR, ALM, COM
Cable length [m]			Actuator cable: 20 or less				
Cooling system			Natural air cooling				
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 40 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Insulation resistance [$\mathrm{M} \Omega$]			Between all external terminals and the case 50 (500 VDC)				
Weight [g]			220 (Screw mounting) 240 (DIN rail mounting)	210 (Screw mounting) 230 (DIN rail mounting)	220 (Screw mounting) 240 (DIN rail mounting)	210 (Screw mounting) 230 (DIN rail mounting)	190 (Screw mounting) 210 (DIN rail mounting)

*1 Please note that versions are subject to change.
*2 Use a shielded communication cable with CAT5 or higher for the PROFINET, EtherNet/IP ${ }^{\text {TM }}$, and EtherCAT® .
*3 The files can be downloaded from the SMC website: http://www.smc.eu

Trademark

EtherNet/IPTM is a trademark of ODVA.
DeviceNet ${ }^{T M}$ is a trademark of ODVA.
EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Example of Operation Command

In addition to the step data input of 64 points maximum in each communication protocol, the changing of each parameter can be performed in real time via numerical data defined operation. * Numerical values other than "Moving force," "Area 1," and "Area 2" can be used to perform operation under numerical instructions from JXCL1.
<Application example> Movement between 2 points

No.	Movement mode	Speed	Position	Acceleration	Deceleration	Pushing force	Trigger LV	Pushing speed	Moving force	Area 1	Area 2	In position
0	1: Absolute	100	10	3000	3000	0	0	0	100	0	0	0.50
1	1: Absolute	100	100	3000	3000	0	0	0	100	0	0	0.50

<Step no. defined operation>

Sequence 1: Servo ON instruction
Sequence 2: Instruction to return to origin
Sequence 3: Specify step data No. 0 to input the DRIVE signal.
Sequence 4: Specify step data No. 1 after the DRIVE signal has been temporarily turned OFF to input the DRIVE signal.

<Numerical data defined operation>

Sequence 1: Servo ON instruction
Sequence 2: Instruction to return to origin
Sequence 3: Specify step data No. 0 and turn ON the input instruction flag (position). Input 10 in the target position. Subsequently the start flag turns ON. Sequence 4: Turn ON step data No. 0 and the input instruction flag (position) to change the target position to 100 while the start flag is ON.

The same operation can be performed with any operation command.

Sequence $4 \rightarrow$

Series JXCE1/91/P1/D1/L1

Dimensions

JXCE1/JXC91

JXC91

JXCP1/JXCD1

Step Motor Controller Series JXCEET/91/P1/D1/L1

DIN rail

AXT100-DR- \square

L Dimensions [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
L	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Series JXCE1/91/P1/D1/L1

Options

Controller setting kit JXC-W2

[Contents]

(1) Communication cable
(2) USB cable
(3) Controller setting software

* A conversion cable (P5062-5) is not required.

(1) Communication cable JXC-W2-C

* It can be connected to the controller directly.
(2) USB cable JXC-W2-U

(3) Controller setting software JXC-W2-S
* CD-ROM

DIN rail mounting adapter LEC-3-D0

* With 2 mounting screws

This should be used when a DIN rail mounting adapter is mounted onto a screw mounting type controller afterwards.

DIN rail AXT100-DR- \square

* For \square, enter a number from the No. line in the table on page 104. Refer to the dimension drawings on page 104 for the mounting dimensions.

Power supply plug JXC-CPW

* The power supply plug is an accessory.

(6) (5) (4)
(3) (2) (1)
(1) C 24 V
(4) $O V$
(2) $M 24 \mathrm{~V}$
(5) N.C.
(3) EMG
(6) LK RLS

Power supply plug

Terminal name	Function	Details
OV	Common supply (-)	M24V terminal/C24V terminal/EMG terminal/ LK RLS terminal are common (-).
M24V	Motor power supply (+)	Motor power supply (+) of the controller
C24V	Control power supply (+)	Control power supply (+) of the controller
EMG	Stop (+)	Connection terminal of the external stop circuit
LK RLS	Lock release (+)	Connection terminal of the lock release switch

Communication plug connector

For DeviceNet ${ }^{\text {TM }}$
Straight type T-branch type
JXC-CD-S JXC-CD-T

Communication plug connector for DeviceNet ${ }^{\text {TM }}$

Terminal name	Details
V+ + Power supply (+) for DeviceNet $^{\text {TM }}$	
CAN_H	Communication wire (High)
Drain	Grounding wire/Shielded wire
CAN_L	Communication wire (Low)
V-	Power supply (-) for DeviceNet ${ }^{\text {TM }}$

For IO-Link
Straight type
JXC-CL-S

Communication plug connector for IO-Link

Terminal no.	Terminal name	Details
1	L+	+24 V
2	NC	N/A
3	L-	0 V
4	C/Q	IO-Link signal

■ Conversion cable P5062-5 (Cable length: 300 mm)

* To connect the teaching box (LEC-T1-3 $\square \mathrm{G} \square$) or controller setting kit (LEC-W2) to the controller, a conversion cable is required.

Series JXCE1/91/P1/D1 Precautions Related to Differences in Controller Versions

As the controller version of the JXC series differs, the internal parameters are not compatible.
\square Do not use a version V2.0 or S2.0 or higher controller with parameters lower than version V2.0 or S2.0.
Do not use a version V2.0 or S2.0 or lower controller with parameters higher than version V2.0 or S2.0.
\square Please use the latest version of the JXC-BCW (parameter writing tool).

* The latest version is Ver. 2.0 (as of December 2017).

Identifying Version Symbols

For versions lower than V2.0 and S2.0:

Do not use with controller parameters higher than V2.0 or S2.0.

Applicable models
Series JXCD1 \square
Series JXCP1 \square
Series JXCE1 \square

For versions higher than V2.0 and S2.0:
Do not use with controller parameters lower than V2.0 or S2.0.

Multi-Axis Step Motor Controller

- Positioning/pushing operation - Step data input (Max. 2048 points)
-Space saving, reduced wiring - Absolute/relative position coordinate instructions
*1 This controls the speed of the slave axis when the speed of the main axis drops due to the effects of an external force and when a speed difference with the slave axis occurs. This control is not for synchronising the position of the main axis and slave axis.

For 3 Axes Series JXC92

- Etheri'et/IP Type
- Width: Approx. 38 \% reduction
- Speed tuning control ${ }^{* 1}$
(3 Axes: JXC92 4 Axes: JXC73/83/93)
- Linear/circular interpolation

Linear interpolation

For 4 Axes Series JXC73/83/93

- Parallel I/O/

Etherilet/IP Type ${ }^{14}$ - Width: Approx. 18 \% 国期 reduction

JXC73/83

* For LE \square, size 25 or larger

Series JXC73/83/92/93

Series JXC73/83/92/93

Step Data Input: Max. 2048 points

For 3 Axes

3-axis operation can be set collectively in one step.

Step	Axis	Movement mode	Speed	Position	Acceleration	Deceleration	Pushing force	Trigger LV	Pushing speed	Moving force	Area 1	Area 2	In position	Comments
			mm/s	mm	$\mathrm{mm} / \mathrm{s}^{2}$	$\mathrm{mm} / \mathrm{s}^{2}$					mm	mm	mm	
0	Axis 1	ABS	500	100.00	3000	3000	0	85.0	50	100.0	10.0	30.0	0.5	
	Axis 2	ABS	500	100.00	3000	3000	0	85.0	50	100.0	10.0	30.0	0.5	
	Axis 3	ABS	500	100.00	3000	3000	0	85.0	50	100.0	10.0	30.0	0.5	
1	Axis 1	INC	500	200.00	3000	3000	0	85.0	50	100.0	0	0	0.5	
	Axis 2	INC	500	200.00	3000	3000	0	85.0	50	100.0	0	0	0.5	
	Axis 3	INC	500	200.00	3000	3000	0	85.0	50	100.0	0	0	0.5	
+	!		+	+	+	+	+	,	,	+	+		:	
2046	Axis 1	SYN-I	500	100.00	3000	3000	0	0	0	100.0	0	0	0.5	
	Axis 2	SYN-I	0	0.00	0	0	0	0	0	100.0	0	0	0.5	
	Axis 3	SYN-I	0	0.00	0	0	0	0	0	100.0	0	0	0.5	
2047	Axis 1	CIR-R	500	0.00	3000	3000	0	0	0	100.0	0	0	0.5	
	Axis 2	CIR-R	0	50.00	0	0	0	0	0	100.0	0	0	0.5	
	Axis 3 *1		0	0.00	0	0	0	0	0	100.0	0	0	0.5	
	Axis $4 * 1$		0	25.00	0	0	0	0	0	100.0	0	0	0.5	

*1 When circular interpolation (CIR-R, CIR-L, CIR-3) is selected in the movement mode, input the X and Y coordinates in the rotation centre position or input the X and Y coordinates in the passing position.

Movement mode	Pushing operation	Details
Blank	\times	Invalid data (Invalid process)
ABS	\bigcirc	Moves to the absolute coordinate position based on the origin of the actuator
INC	\bigcirc	Moves to the relative coordinate position based on the current position
LIN-A	\times	Moves to the absolute coordinate position based on the origin of the actuator by linear interpolation
LIN-I	\times	Moves to the relative coordinate position based on the current position by linear interpolation
CIR-R*2	\times	With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves in the clockwise direction by circular interpolation. The target position and rotation centre position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis 3 *1: Rotation centre position X Axis 4 *1: Rotation centre position Y
CIR-L*2	\times	With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves in the counter-clockwise direction by circular interpolation. The target position and rotation centre position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis 3 *1: Rotation centre position X Axis 4 *1: Rotation centre position Y
SYN-I	\times	Moves to the relative coordinate position based on the current position by speed tuning control*3
CIR-3*2	\times	With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves based on the three specified points by circular interpolation. The target position and passing position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis $3 * 1$: Passing position X Axis $4 * 1$: Passing position Y

*2 Performs a circular operation on a plane using Axis 1 and Axis 2
*3 This controls the speed of the slave axis when the speed of the main axis drops due to the effects of an external force and when a speed difference with the slave axis occurs. This control is not for synchronising the position of the main axis and slave axis.

For 4 Axes

4-axis operation can be set collectively in one step.

Step	Axis	Movement mode	Speed	Position	Acceleration	Deceleration	Positioning/ Pushing	Area 1	Area 2	In position	Comments
			mm/s	mm	$\mathrm{mm} / \mathrm{s}^{2}$	$\mathrm{mm} / \mathrm{s}^{2}$		mm	mm	mm	
0	Axis 1	ABS	100	200.00	1000	1000	0	6.0	12.0	0.5	
	Axis 2	ABS	50	100.00	1000	1000	0	6.0	12.0	0.5	
	Axis 3	ABS	50	100.00	1000	1000	0	6.0	12.0	0.5	
	Axis 4	ABS	50	100.00	1000	1000	0	6.0	12.0	0.5	
1	Axis 1	INC	500	250.00	1000	1000	1	0	0	20.0	
	Axis 2	INC	500	250.00	1000	1000	1	0	0	20.0	
	Axis 3	INC	500	250.00	1000	1000	1	0	0	20.0	
	Axis 4	INC	500	250.00	1000	1000	1	0	0	20.0	
,	!		!	!	!	!	!	,	!	+	
2046	Axis 4	ABS	200	700	500	500	0	0	0	0.5	
2047	Axis 1	ABS	500	0.00	3000	3000	0	0	0	0.5	
	Axis 2	ABS	500	0.00	3000	3000	0	0	0	0.5	
	Axis 3	ABS	500	0.00	3000	3000	0	0	0	0.5	
	Axis 4	ABS	500	0.00	3000	3000	0	0	0	0.5	

Movement mode	Pushing operation	
Blank	\times	Invalid data (Invalid process)
ABS	O	Moves to the absolute coordinate position based on the origin of the actuator
INC	O	Moves to the relative coordinate position based on the current position
LIN-A	\times	Moves to the absolute coordinate position based on the origin of the actuator by linear interpolation
LIN-I	\times	Moves to the relative coordinate position based on the current position by linear interpolation
CIR-R*1	\times	With Axis 1 assigned to the X-axis and Axis 2 to the Y-axis, it moves in the clockwise direction by circular interpolation. The target position and rotation centre position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis 3: Rotation centre position X Axis 4: Rotation centre position Y
CIR-L*1	\times	With Axis 1 assigned to the X-axis and Axis 2 to the Y-axis, it moves in the counter-clockwise direction by circular interpolation. The target position and rotation centre position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis 3: Rotation centre position X Axis 4: Rotation centre position Y
SYN-I	\times	Moves to the relative coordinate position based on the current position by speed tuning control $* 2$

[^13]
Series JXC92

For 3 Axes System Construction/EtherNet//P ${ }^{\text {™ }}$ Type (JXC92)

*1 The connected actuators should be ordered separately. (Refer to the applicable actuators on page 114.)

Multi-Axis Step Motor Controller Series JXC73/83

For 4 Axes System Construction/Parallel I/O (JXC73/83)

[^14]
Series JXC93

For 4 Axes System Construction/EtherNet/IP ${ }^{\text {Tu }}$ Type (JXC93)

3-Axis Step Motor Controller (Etheri'et/IP Type)

 Series JXC92How to Order

EtherNet/IPTM Type (JXC92)

Applicable Actuators

Applicable actuators	
Electric Actuator/Rod Series LEY	
Electric Actuator/Guide Rod Series LEYG	Refer to the Web
Electric Actuator/Slider Series LEF	
Electric Slide Table Series LES/LESH	
Electric Rotary Table Series LER	
Electric Actuator/Miniature Series LEPY/LEPS	
Electric Gripper (2-Finger Type, 3-Finger Type) Series LEH	

Order the actuator separately, including the actuator cable.
(Example: LEFS16B-100B-S1)

* For the "Speed-Work Load" graph of the actuator, refer to the LECPA section on the model selection page of the electric actuators Web Catalogue.

Specifications

For the setting of functions and operation methods, refer to the operation manual on the SMC website. (Documents/Download --> Instruction Manuals)

*1 Do not use a power supply with inrush current protection for the motor drive power supply.
*2 Power consumption depends on the actuator connected. Refer to the actuator specifications for further details.
*3 EtherNet/IP ${ }^{\text {TM }}$ is a trademark of ODVA.
*4 Applicable to non-magnetising locks

Series JXC92

Dimensions

EtherNet/IPTM Type JXC92

Screw mounting

DIN rail mounting

Controller Details

EtherNet//PTM ${ }^{\text {Ty }}$ Type JXC92

No.	Name	Description	Details
(1)	P1, P2	EtherNet/IPTM ${ }^{\text {TM }}$ communication connector	Connect Ethernet cable.
(2)	NS, MS	Communication status LED	Displays the status of the EtherNet/IPTM communication
(3)	$\begin{gathered} \text { X100 } \\ \text { X10 } \\ \text { X1 } \end{gathered}$	IP address setting switches	Switch to set the 4th byte of the IP address by $\mathrm{X} 1, \mathrm{X} 10$ and X 100 .
(4)	PWR	Power supply LED (Green)	Power supply ON: Green turns on Power supply OFF: Green turns off
(5)	RUN	Operation LED (Green)	Running in EtherNet/IP ${ }^{\text {TM }}$: Green turns on Running via USB communication: Green flashes Stopped: Green turns off
(6)	USB	USB connection LED (Green)	USB connected: Green turns on USB not connected: Green turns off
(7)	ALM	Alarm LED (Red)	With alarm: Red turns on Without alarm: Red turns off
(8)	USB	Serial communication connector	Connect to a PC via the USB cable.
(9)	ENC 1	Encoder connector (16 pins)	Axis 1: Connect the actuator cable.
(10)	MOT 1	Motor power connector (6 pins)	
(11)	ENC 2	Encoder connector (16 pins)	Axis 2: Connect the actuator cable.
(12)	MOT 2	Motor power connector (6 pins)	
(13)	ENC 3	Encoder connector (16 pins)	Axis 3: Connect the actuator cable.
(14)	MOT 3	Motor power connector (6 pins)	
(15)	Cl	Control power supply connector *1	Control power supply (+), All axes stop (+), Axis 1 lock release (+), Axis 2 lock release (+), Axis 3 lock release (+), Common (-)
(16)	M PWR	Motor power supply connector *1	Motor power supply (+), Motor power supply (-)

*1 Connectors are included. (Refer to page 120.)

4-Axis Step Motor Controller (Parallel I/O/Etheri'et/IP Type)

 Series JXC73/83/93How to Order
Parallel I/O (JXC73/83)

Controller	$J \times C \longdiv { 8 }$		2		
creysis 10	I/O typed		d/O cable, mounting		
	Symbol	1/O type	Symbol	I/O cable	Mounting
周 1 T	7	NPN	1	1.5 m	Screw mounting
(1) $\square_{4}+8$	8	PNP	2	1.5 m	DIN rail
回눈	4-axis type		3	3 m	Screw mounting
			4	3 m	DIN rail
- 10			5	5 m	Screw mounting
- $\square^{\text {B }}$			6	5 m	DIN rail
			7	None	Screw mounting
			8	None	DIN rail

EtherNet/IPTM ${ }^{\text {TM }}$ Type (JXC93)

Applicable Actuators

For the "Speed-Work Load" graph of the actuator, refer to the LECPA section on the model selection page of the electric actuators Web Catalogue.

Series JXC73/83/93

Specifications

Parallel I/O (JXC73/83)	manual on the SMC website. (Documents/Download --> Instruction Manuals)
Item	Specifications
Number of axes	Max. 4 axes
Compatible motor	Step motor (Servo/24 VDC)
Compatible encoder	Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Power supply *1	Main control power supply Power voltage: 24 VDC ± 10 \% Max. current consumption: 300 mA Motor power supply, Motor control power supply (Common) Power voltage: 24 VDC ± 10 \% Max. current consumption: Based on the connected actuator *2
Parallel input	16 inputs (Photo-coupler isolation)
Parallel output	32 outputs (Photo-coupler isolation)
Serial communication	USB2.0 (Full Speed 12 Mbps)
Memory	Flash-ROM/EEPROM
LED indicator	PWR, RUN, USB, ALM
Lock control	Forced-lock release terminal *3
Cable length	I/O cable: 5 m or less, Actuator cable: 20 m or less
Cooling system	Natural air cooling
Operating temperature range	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (No freezing)
Operating humidity range	90 \% RH or less (No condensation)
Storage temperature range	$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (No freezing)
Storage humidity range	90 \% RH or less (No condensation)
Insulation resistance	Between all external terminals and the case: $50 \mathrm{M} \Omega$ (500 VDC)
Weight	1050 g (Screw mounting), 1100 g (DIN rail mounting)

*1 Do not use a power supply with inrush current protection for the motor drive power and motor control power supply.
*2 Power consumption depends on the actuator connected. Refer to the actuator specifications for further details.
*3 Applicable to non-magnetising locks

EtherNet/IPTM Type (JXC93)

Item		Specifications
Number of axes		Max. 4 axes
Compatible motor		Step motor (Servo/24 VDC)
Compatible encoder		Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Power supply*1		Main control power supply Power voltage: 24 VDC ± 10 \% Max. current consumption: 350 mA Motor power supply, Motor control power supply (Common) Power voltage: 24 VDC ± 10 \% Max. current consumption: Based on the connected actuator *2
	Protocol	EtherNet/IP ${ }^{\text {TM }}$ *4
	Communication speed	$10 \mathrm{Mbps} / 100 \mathrm{Mbps}$ (automatic negotiation)
	Communication method	Full duplex/Half duplex (automatic negotiation)
	Configuration file	EDS file
	Occupied area	Input 16 bytes/Output 16 bytes
	IP address setting range	Manual setting by switches: From 192.168.1.1 to 254, Via DHCP server: Arbitrary address
	Vendor ID	7 h (SMC Corporation)
	Product type	2 Bh (Generic Device)
	Product code	DCh
Serial communication		USB2.0 (Full Speed 12 Mbps)
Memory		Flash-ROM/EEPROM
LED indicator		PWR, RUN, USB, ALM, NS, MS, L/A, 100
Lock control		Forced-lock release terminal *3
Cable length		Actuator cable: 20 m or less
Cooling system		Natural air cooling
Operating temperature range		$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (No freezing)
Operating humidity range		90% RH or less (No condensation)
Storage temperature range		$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (No freezing)
Storage humidity range		90 \% RH or less (No condensation)
Insulation resistance		Between all external terminals and the case: $50 \mathrm{M} \Omega$ (500 VDC)
Weight		1050 g (Screw mounting), 1100 g (DIN rail mounting)
$\begin{aligned} & 1 \mathrm{DO} \\ & 2 \mathrm{Po} \\ & 3 \mathrm{Ap} \\ & 4 \mathrm{Ett} \end{aligned}$	not use a power supply with er consumption depends on licable to non-magnetising lo erNet/IP ${ }^{T M}$ is a trademark of	otection for the motor drive power and motor control power supply. nected. Refer to the actuator specifications for further details.

4-Axis Step Motor Controller Series JXC73/83/93

Dimensions

Parallel I/O JXC73/83

EtherNet/IP ${ }^{\text {TM }}$ Type JXC93

Screw mounting

DIN rail mounting

DIN rail mounting

Series JXC73/83/93

Controller Details

Parallel I/O JXC73/83

EtherNet/IPTM Type JXC93

No.	Name	Description	Details
(1)	PWR	Power supply LED (Green)	Power supply ON: Green turns on Power supply OFF: Green turns off
(2)	RUN	Operation LED (Green)	Running in parallel I/O: Green turns on Running via USB communication: Green flashes Stopped: Green turns off
(3)	USB	USB connection LED (Green)	USB connected: Green turns on USB not connected: Green turns off
(4)	ALM	Alarm LED (Red)	With alarm: Red turns on Without alarm: Red turns off
(5)	USB	Serial communication	Connect to a PC via the USB cable.
(6)	C PWR	Main control power supply connector (2 pins) *1	Main control power supply (+) (-)
(7)	I/O 1	Parallel I/O connector (40 pins)	Connect to a PLC via the I/O cable.
(8)	I/O 2	Parallel I/O connector (40 pins)	Connect to a PLC via the I/O cable.
(9)	ENC 1	Encoder connector (16 pins)	Axis 1: Connect the actuator cable.
(10)	MOT 1	Motor power connector (6 pins)	
(11)	ENC 2	Encoder connector (16 pins)	Axis 2: Connect the actuator cable.
(12)	MOT 2	Motor power connector (6 pins)	
(13)	CI 12	Motor control power supply connector*1	Motor control power supply (+), Axis 1 stop (+), Axis 1 lock release (+), Axis 2 stop (+), Axis 2 lock release (+)
(14)	M PWR 1 2	Motor power supply connector*1	For Axis 1, 2. Motor power supply (+), Common (-)
(15)	ENC 3	Encoder connector (16 pins)	Axis 3: Connect the actuator cable.
(16)	MOT 3	Motor power connector (6 pins)	
(17)	ENC 4	Encoder connector (16 pins)	Axis 4: Connect the actuator cable.
(18)	MOT 4	Motor power connector (6 pins)	
(19)	CI 34	Motor control power supply connector*1	Motor control power supply (+), Axis 3 stop (+), Axis 3 lock release (+), Axis 4 stop (+), Axis 4 lock release (+)
(20)	M PWR 3 4	Motor power supply connector*1	For Axis 3, 4. Motor power supply (+), Common (-)

*1 Connectors are included. (Refer to page 120.)

No.	Name	Description	Details
(1)	PWR	Power supply LED (Green)	Power supply ON: Green turns on Power supply OFF: Green turns off
(2)	RUN	Operation LED (Green)	Running in EtherNet/IPTM: Green turns on Running via USB communication: Green flashes Stopped: Green turns off
(3)	USB	USB connection LED (Green)	USB connected: Green turns on USB not connected: Green turns off
(4)	ALM	Alarm LED (Red)	With alarm: Red turns on Without alarm: Red turns off
(5)	USB	Serial communication	Connect to a PC via the USB cable.
(6)	C PWR	Main control power supply connector (2 pins) *1	Main control power supply (+) (-)
(7)	$\begin{gathered} \mathrm{x} 100 \\ \text { x10 } \\ \text { x1 } \end{gathered}$	IP address setting switches	Switch to set the 4th byte of the IP address by X1, X10 and X100.
(8)	MS, NS	Communication status LED	Displays the status of the EtherNet/IP ${ }^{\text {TM }}$ communication
(9)	ENC 1	Encoder connector (16 pins)	Axis 1: Connect the actuator cable.
(10)	MOT 1	Motor power connector (6 pins)	
(11)	ENC 2	Encoder connector (16 pins)	Axis 2: Connect the actuator cable.
(12)	MOT 2	Motor power connector (6 pins)	
(13)	CI 12	Motor control power supply connector *1	Motor control power supply (+), Axis 1 stop (+), Axis 1 lock release (+), Axis 2 stop (+), Axis 2 lock release (+)
(14)	M PWR 1 2	Motor power supply connector*1	For Axis 1, 2. Motor power supply (+), Common (-)
(15)	ENC 3	Encoder connector (16 pins)	Axis 3: Connect the actuator cable.
(16)	MOT 3	Motor power connector (6 pins)	
(17)	ENC 4	Encoder connector (16 pins)	Axis 4: Connect the actuator cable.
(18)	MOT 4	Motor power connector (6 pins)	
(19)	CI 34	Motor control power supply connector *1	Motor control power supply (+), Axis 3 stop (+), Axis 3 lock release (+), Axis 4 stop (+), Axis 4 lock release (+)
(20)	M PWR 3 4	Motor power supply connector*1	For Axis 3, 4. Motor power supply (+), Common (-)
(21)	P1, P2	EtherNet/IPTM communication connector	Connect Ethernet cable.

*1 Connectors are included. (Refer to page 120.)

Multi-Axis Step Motor Controller Series JXC73/83/92/93

Wiring Example 1

Cable with Main Control Power Supply Connector (For 4 Axes)*1: C PWR			1 pc.	$\begin{array}{\|c\|} \hline \text { For } 4 \text { Axes } \\ \hline \text { JXC73/83/93 } \\ \hline \end{array}$
Terminal name	Function	Details		
+24V	Main control power supply (+)	Power supply (+) supplied to the	main con	
24-0V	Main control power supply (-)	Power supply (-) supplied to the	main cont	

*1 Part no.: JXC-C1 (Cable length: 1.5 m)
Cable with main control power supply connector

Motor Power Supply Connector (For 3/4 Axes)*2: M PWR			2 pcs.*3	$\begin{aligned} & \hline \text { For } 3 \text { Axes } \\ & \hline \text { JXC92 } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { For } 4 \text { Axes } \\ \hline \text { IXC.73/83/93 } \\ \hline \end{array}$
Terminal name	Function	Details			Note
OV	Motor power supply (-)	Power supply (-) supplied to the motor power		For 3 axes JXC92	
		The M 24 V terminal, C 24 V terminal, EMG terminal, and LKRLS terminal are common (-).		$\begin{aligned} & \text { For } 4 \\ & \text { JXC7 } \end{aligned}$	$\begin{aligned} & 4 \text { axes } \\ & 73 / 83 / 93 \end{aligned}$
M 24V	Motor power supply (+)	Power supply (+) suppli	d to the motor power		

*2 Manufactured by PHOENIX CONTACT (Part no.: MSTB2, 5/2-STF-5, 08)
*3 1 pc. for 3 axes (JXC92)

For 4 Axes JXC73/83/93
Motor Control Power Supply Connector (For 4 Axes) ${ }^{* 4}$: Cl 2 pcs.

Terminal name	Function	Details
C 24V	Motor control power supply (+)	Power supply (+) supplied to the motor control
EMG1/EMG3	Stop (+)	Axis 1/Axis 3: Input (+) for releasing the stop
EMG2/EMG4	Stop (+)	Axis 2/Axis 4: Input (+) for releasing the stop
LKRLS1/LKRLS3	Lock release (+)	Axis 1/Axis 3: Input (+) for releasing the lock
LKRLS2/LKRLS4	Lock release (+)	Axis 2/Axis 4: Input (+) for releasing the lock

*4 Manufactured by PHOENIX CONTACT (Part no.: FK-MC0, 5/5-ST-2, 5)

Control Power Supply Connector (For 3 Axes)*5: Cl 1 pc.

Terminal name	Function	Details
0V	Control power supply (-)	The C 24V terminal, LKRLS terminal, and EMG terminal are common (-).
C 24V	Control power supply (+)	Power supply (+) supplied to the control
LKRLS3	Lock release (+)	Axis 3: Input (+) for releasing the lock
LKRLS2	Lock release (+)	Axis 2: Input (+) for releasing the lock
LKRLS1	Lock release (+)	Axis 1: Input (+) for releasing the lock
EMG	Stop (+)	All axes: Input (+) for releasing the stop

*5 Manufactured by PHOENIX CONTACT (Part no.: FK-MC0, 5/6-ST-2, 5)

Motor power supply connector

Motor control power supply connector

Control power supply connector

Series JXC73/83/92/93

Wiring Example 2

Parallel I/O Connector $\begin{array}{ll}\text { * When you connect a PLC to the I/O } 1 \text { or I/O } 2 \text { parallel I/O connector, use the I/O cable (JXC-C2-ロ). } \\ \text { * The wiring changes depending on the type of the parallel I/O (NPN or PNP). }\end{array}$

I/O 1 Wiring example

NPN JXC73

I/O 1 Input Signal

Name	Details
$\begin{aligned} & \text { +COM1 } \\ & \text { +COM2 } \end{aligned}$	Connects the power supply 24 V for input/output signal
INO to IN8	Step data specified Bit No. (Standard: When 512 points are used)
IN9 IN10	Step data specified extension Bit No. (Extension: When 2048 points are used)
SETUP	Instruction to return to origin
HOLD	Operation is temporarily stopped
DRIVE	Instruction to drive
RESET	Alarm reset and operation interruption
SVON	Servo ON instruction

PNP JXC83

+COM1	1
+COM2	21
INO	2
IN1	22
IN2	3
IN3	23
IN4	4
IN5	24
IN6	5
IN7	25
IN8	6
IN9	26
IN10	7
SETUP	27
HOLD	8
DRIVE	28
RESET	9
SVON	29

OUT0	10	Load
OUT1	30	Load
OUT2	11	Load
OUT3	31	Load
OUT4	12	Load
OUT5	32	Load
OUT6	13	Load
OUT7	33	Load
OUT8	14	Load
BUSY (OUT9)	34	Load
AREA (OUT10)	15	Load
SETON	35	Load
INP	16	Load
SVRE	36	Load
*ESTOP	17	Load
*ALARM	37	Load
-COM1	18	
-COM1	19	
-COM1	38	
-COM2	20	
-COM2	39	
-COM2	40	

I/O 1 Output Signal

Name	Details
OUT0 to OUT8	Outputs the step data no. during operation
BUSY (OUT9)	Outputs when the operation of the actuator is in progress
AREA (OUT10)	Outputs when all actuators are within the area output range
SETON	Outputs when the return to origin of all actuators is completed
INP	Outputs when the positioning or pushing of all actuators is completed
SVRE	Outputs when servo is ON
*ESTOP *1	Not output when EMG stop is instructed
*ALARM *1	Not output when alarm is generated
-COM1 -COM2	Connects the power supply 0 V for input/output signal
*1Negative-logic circuit signal	

Multi-Axis Step Motor Controller Series JXC73/83/92/93

Wiring Example 2

Parallel I/O Connector * When you connect a PLC to the I/O 1 or I/O 2 parallel I/O connector, use the I/O cable (JXC-C2- \square). * The wiring changes depending on the type of the parallel I/O (NPN or PNP).

I/O 2 Wiring example

NPN JXC73

I/O 2 Input Signal

Name	Details
+COM3 +COM4	Connects the power supply 24 V for input/output signal
N.C.	Cannot be connected

PNP JXC83

*1 Cannot be connected

BUSY1	10	Load
BUSY2	30	Load
BUSY3	11	Load
BUSY4	31	Load
AREA1	12	Load
AREA2	32	Load
AREA3	13	Load
AREA4	33	Load
INP1	14	Load
INP2	34	Load
INP3	15	Load
INP4	35	Load
*ALARM1	16	Load
*ALARM2	36	Load
*ALARM3	17	Load
*ALARM4	37	Load
-COM3	18	
-COM3	19	
-COM3	38	
-COM4	20	
-COM4	39	
-COM4	40	

I/O 2 Output Signal

Name	Details
BUSY1	Busy signal for axis 1
BUSY2	Busy signal for axis 2
BUSY3	Busy signal for axis 3
BUSY4	Busy signal for axis 4
AREA1	Area signal for axis 1
AREA2	Area signal for axis 2
AREA3	Area signal for axis 3
AREA4	Area signal for axis 4
INP1	Positioning or pushing completion signal for axis 1
INP2	Positioning or pushing completion signal for axis 2
INP3	Positioning or pushing completion signal for axis 3
INP4	Positioning or pushing completion signal for axis 4
*ALARM1 *2	Alarm signal for axis 1
*ALARM2 *2	Alarm signal for axis 2
*ALARM3 *2	Alarm signal for axis 3
*ALARM4 *2	Alarm signal for axis 4
-COM3 -COM4	

Series JXC73/83/92/93

Options

Cable with main control power supply connector
 JXC - C1
 For 4 Axes
 JXC73/83/93

Cable length: 1.5 m (Accessory)

Number of cores	2
AWG size	AWG20

I/O cable (1 pc.)

Cable length (L) [m]

$\mathbf{1}$	1.5
3	3
$\mathbf{5}$	5

For 4Aves JxC73/83

Pin no.	Wire colour						
1	Orange (Black 1)	6	Orange (Black 2)	11	Orange (Black 3)	16	Orange (Black 4)
21	Orange (Red 1)	26	Orange (Red 2)	31	Orange (Red 3)	36	Orange (Red 4)
2	Grey (Black 1)	7	Grey (Black 2)	12	Grey (Black 3)	17	Grey (Black 4)
22	Grey (Red 1)	27	Grey (Red 2)	32	Grey (Red 3)	37	Grey (Red 4)
3	White (Black 1)	8	White (Black 2)	13	White (Black 3)	18	White (Black 4)
23	White (Red 1)	28	White (Red 2)	33	White (Red 3)	38	White (Red 4)
4	Yellow (Black 1)	9	Yellow (Black 2)	14	Yellow (Black 3)	19	Yellow (Black 4)
24	Yellow (Red 1)	29	Yellow (Red 2)	34	Yellow (Red 3)	39	Yellow (Red 4)
5	Pink (Black 1)	10	Pink (Black 2)	15	Pink (Black 3)	20	Pink (Black 4)
25	Pink (Red 1)	30	Pink (Red 2)	35	Pink (Red 3)	40	Pink (Red 4)

DIN rail

For 3 Axes \quad For 4 Axes

AXT100-DR- \square

* For \square, enter a number from the No. line in the table below. Refer to the dimension drawings on pages 115 and 118 for the mounting dimensions.

L Dimension

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting bracket (with 6 mounting screws) For 3 Axes For 4 Axes JxC92 JxC73/83/93

This should be used when the DIN rail mounting bracket is mounted onto a screw mounting type controller afterwards.

Multi-Axis Step Motor Controller Series JXC73/83/92/93

Contents

(1) Controller setting software (CD-ROM)*1
(2) USB cable (Cable length: 3 m)

Description		Model
(1)	Controller setting software	JXC-MA1-1
(2)	USB cable	JXC-MA1-2

* Can be ordered separately

Options

(1) Controller setting software (CD-ROM)
(2) USB cable (Cable length: $\mathbf{3} \mathbf{~ m}$)

Description		Model
(1)	Controller setting software	JXC-W1-1
(2)	USB cable	JXC-W1-2

Controller setting kit JXC - MA1 ${ }^{* 1}$	$\frac{\text { For } 3 \text { Axes }}{\text { JXC92 }}$
-Controller (Japanese	ing kit Englis

Series JXC73/83/92/93

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

LE-CP -1
Cable length (L) [m]

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	$8^{* 1}$
\mathbf{A}	$10^{* 1}$
\mathbf{B}	$15^{* 1}$
\mathbf{C}	$20^{* 1}$

*1 Produced upon receipt of order (Robotic cable only)

With lock and sensor

Cable type

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

LE-CP- ${ }_{\mathrm{A}}^{8} \mathrm{~B} /$ Cable length: $8 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$
(*1 Produced upon receipt of order)

AC Servo Motor

Rod Type Page 155 Secondiay Batieies Compatide Series 25A-LEY

Guide Rod Type Page 157 Series LEYG

AC Servo Motor Driver
 Series LECS \square

Page 173

Series LECSS-T
Page 189

Series LECY \square
Page 200

Electric Actuator/Rod Type AC Servo Motor Series LEY/LEY-X5 Model Selection

Selection Procedure

Positioning Control Selection Procedure

Check the work load-speed. (Vertical transfer)

Step 2 Check the cycle time.

Selection Example

Operating
conditions

Step 1

Check the work load-speed. <Speed-Vertical work load graph>
Select the target model based on the workpiece mass and speed with reference to the <Speed-Vertical work load graph>.
Selection example) The LEY25 $\square \mathbf{B}$ is temporarily selected based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to pages 135, 144 and 151 for the horizontal work load in the specifications, and page 169 for the precautions.

<Speed-Vertical work load graph>
(LEY25 \square)

The regeneration option may be necessary. Refer to pages 129, 130 and 131 for "Required Conditions for Regeneration Option".
Check the cycle time.
Calculate the cycle time using the following calculation method. - Cycle time T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

Calculation example)
T1 to T4 can be calculated as follows

L : Stroke [mm] ... (Operating condition)
V : Speed [mm/s] ... (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed
T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop T4: Settling time [s] ... Time until in position is completed
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 5000=0.06[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 5000=0.06[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{300-0.5 \cdot 300 \cdot(0.06+0.06)}{300}=0.94[\mathrm{~s}]$
T4 $=0.05$ [s]
Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.06+0.94+0.06+0.05=1.11[\mathrm{~s}]$

Selection Procedure

Force Control Selection Procedure

* The duty ratio is a ratio of the operation time in one cycle.

Selection Example

Operating conditions

- Mounting condition: Horizontal (pushing)	•Duty ratio: $60[\%]$
- Jig weight: $0.5[\mathrm{~kg}]$	- Speed: $100[\mathrm{~mm} / \mathrm{s}]$
- Force: $255[\mathrm{~N}]$	-Stroke: $300[\mathrm{~mm}]$

Check the duty ratio.
<Conversion table of force-duty ratio>
Select the [Force] from the duty ratio with reference to the <Conversion table of force-duty ratio>.

Selection example)
Based on the table below,
-Duty ratio: 60 [\%]
Therefore, Torque limit/Command value will be 30 [\%].
<Conversion table of force-duty ratio>
(LEY25/AC Servo motor)

Torque limit/ Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
25 or less	100	-
30	60	1.5

* [Torque limit/Command value [\%]] is the set value for the driver.
* [Continuous pushing time] is the time that the actuator can continuously keep pushing.

Step 2

Check the force. <Force conversion graph>

Select the target model based on the torque limit/command value and pushing force with reference to the <Force conversion graph>.

Selection example)
Based on the graph shown on the right side,

- Torque limit/Command value: 30 [\%]
- Force: 255 [N]

Therefore, the LEY25B is temporarily selected.

<Force conversion graph> (LEY25)

<Graph of allowable lateral load on the rod end>

Check the lateral load on the rod end.

<Graph of allowable lateral load on the rod end>

Confirm the allowable lateral load on the rod end of the actuator: LEY25B, which has been selected temporarily with reference to the <Graph of allowable lateral load on the rod end>.
Selection example)
Based on the graph shown on the right side,
\bullet - Jig weight: $0.5[\mathrm{~kg}] \sim 5[\mathrm{~N}]$

- Product stroke: 300 [mm]

Therefore, the lateral load on the rod end is in the allowable range.

Based on the above calculation result, the LEY25B-300 is selected.

Speed-Vertical Work Load Graph/Required Conditions for "Regeneration Option"

LEY25 \square (Motor mounting position: Top/Parallel, In-line)

LEY32 \square (Motor mounting position: Top/Parallel)

LEY63 \square (Motor mounting position: Top/Parallel, In-line)

Required conditions for "Regeneration option"

* Regeneration option is required when using product above regeneration line in graph. (Order separately.)
"Regeneration Option" Models

Size	Model
LEY25 \square	LEC-MR-RB-032
LEY32 \square	LEC-MR-RB-032
LEY63 \square	LEC-MR-RB-12

LEY32D (Motor mounting position: In-line)

Model Selection Series LEY／LEY－X5
 AC Servo Motor
 25，32， 63
 Dust／Drip proof（IP65 equivalent））

Speed－Horizontal Work Load Graph／Required Conditions for＂Regeneration Option＂

LEY25 \square（Motor mounting position：Top／Parallel，In－line）

LEY32 \square（Motor mounting position：Top／Parallel）

LEY63 \square（Motor mounting position：Top／Parallel，In－line）

Required conditions for＂Regeneration option＂
＊Regeneration option is required when using product above regeneration line in graph．（Order separately．）
＂Regeneration Option＂Models

Size	Model
LEY25 \square	LEC－MR－RB－032
LEY32 \square	LEC－MR－RB－032
LEY63 \square	-

LEY32D（Motor mounting position：In－line）

Allowable Stroke Speed

Model	AC servo motor	Lead		Stroke［mm］													
		Symbol	［mm］	30	50	100	150	200	250	300	350	400	450	500	600	700	800
LEY25$\binom{\text { Motor mounting position: }}{\text { Top/Parallel, In-line }}$	$\begin{aligned} & 100 \mathrm{~W} \\ & \square 40 \end{aligned}$	A	12	900							600		－	－	－		
		B	6				450				30		－	－		－	
		C	3				225				15		－	－		－	
		（Motor rotation speed）		（4500 rpm）							（3000	pm）	－	－		－	
	$\begin{gathered} 200 \mathrm{~W} \\ \square \square 60 \end{gathered}$	A	20	1200									800		－		
		B	10	600									400		－		
		C	5	300									200		－		
		（Motor rotation speed）		（3600 rpm）									（2400 rpm）		－		
	$\begin{gathered} 200 \mathrm{~W} \\ \square \square 60 \end{gathered}$	A	16	1000									640		－		
		B	8	500									320		－		
$\left[\begin{array}{c}\text { Motor mounting position：} \\ \text { In－line }\end{array}\right]$		C	4	250									160		－		
		（Motor rotation speed）		（3750 rpm）									（2400 rpm）		－		
LEY63 \square $\binom{$ Motor mounting position：}{ Top／Parallel，In－line }	$\begin{gathered} 400 \mathrm{~W} \\ \square \square 60 \end{gathered}$	A	20	1000											800	600	500
		B	10	500											400	300	250
		C	5	250											200	150	125
		（Motor rotation speed）		（3000 rpm）											（2400 rpm）（1800 rpm）		（1500 rpm）
		L＊	2.86	70													
		（Motor ro	（Motor roation speed）	（1470 rpm）													

Series LEY/LEY-X5
 AC Servo Motor Size 25, 32, 63 Dust/Drip proof (IP65 equivalent))

Force Conversion Graph (Guide)

LEY25 \square (Motor mounting position: Top/Parallel, In-line)

LEY32 \square (Motor mounting position: Top/Parallel)

LEY32D \square (Motor mounting position: In-line)

LEY63 \square (Motor mounting position: Top/Parallel, In-line)

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] = [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Electric Actuator/
 Rod Type
 Series LEY
 LEY25, 32, 63

Please contact SMC for dust-tight/water-jet-proof (IP65 equivalent) and the models compatible with secondary batteries.

WMECHATROLINK Compatible PPage 200

How to Order

1 Accuracy	
$-\overline{y y}$	Basic type
H	High precision type

3 Motor mounting position
$-\overline{2}$
\mathbf{R}
Right mounting
L
L

5 Lead [mm]

Symbol	LEY25	LEY32 $* 1$	LEY63
A	12	$16(20)$	20
B	6	$8(10)$	10
C	3	$4(5)$	5
L	-	-	$2.86 * 2$

*1 The values shown in () are the lead for top mounting, right/left side parallel types. (Equivalent lead which includes the pulley ratio [1.25:1])
*2 Only available for top mounting and right/left side parallel types. (Equivalent lead which includes the pulley ratio [4:7])

6 Stroke $[\mathrm{mm}]$
30
30
to
$\mathbf{8 0 0}$

Refer to the applicable stroke table for details.

Rod end thread

$$
\begin{array}{c|c|}
\hline- & \text { Rod end female thread } \\
\hline \mathbf{M} & \begin{array}{c}
\text { Rod end male thread } \\
(1 \text { rod end nut is included.) }
\end{array} \\
\hline
\end{array}
$$

4 Motor type*1,2				
Symbol	Type	Output [W]	Actuator size	Compatible drivers*2
S2	AC servo motor (Incremental encoder)	100	25	LECSA■-S1
S3	AC servo motor (Incremental encoder)	200	32	LECSA■-S3
S6	AC servo motor (Absolute encoder)	100	25	LECSB $\square-$ S5 LECSC■-S5 LECSS $\square-$ S5
S7	AC servo motor (Absolute encoder)	200	32	LECSB $\square-$ S7 LECSC -S7 LECSS \square-S7
T6	AC servo motor (Absolute encoder)	100	25	LECSS2-T5
T7	200	32	LECSS2-T7	

*1 For motor type S2 and S6, the compatible driver part number suffixes are S1 and S5 respectively.
*2 For motor type T6, the compatible driver part number suffix is T5.
*3 For details about the driver, refer to page 173.
7 Dust-tight/Water-jet-proof (Only available for LEY63)

Symbol	LEY25/32	LEY63
-	IP4x equivalent	IP5x equivalent (Dust-protected)
\mathbf{P}	-	IP65 equivalent (Dust-tight/ Water-jet-proof)/With vent hole tap

* When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water.
* The fitting and tubing should be provided separately by the customer. Select [Applicable tubing O.D.: $\varnothing 4$ or more, Connection thread: Rc1/8].
* Cannot be used in environments exposed to cutting oil etc. Take suitable protective measures. For details about enclosure, refer to "Enclosure" on page 306.

8 Motor option

-	Without option
B	With lock*

* When "With lock" is selected for the top mounting and right/left side parallel types, the motor body will stick out of the end of the body for size 25 with strokes 30 mm or less. Check for interference with workpieces before selecting a model.

Motor mounting position: Top/Parallel

Motor mounting position: In-line

Cable type

-	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

* The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
* Standard cable entry direction is
- Top/Parallel: (A) Axis side
- In-line: (B) Counter axis side
(Refer to page 185 for details.)

(14) Io cable length [m$]^{*}$

-	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

* When "Without driver" is selected for driver type, only "-: Without cable" can be selected. Refer to page 186 if I/O cable is required. (Options are shown on page 186.)

Cable length* $[\mathrm{m}]$

-	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

* The length of the encoder, motor and lock cables are the same.

13 Driver type*

	Compatible driver	Power supply voltage [V]
-	Without driver	-
A1	LECSA1-S \square	100 to 120
A2	LECSA2-S \square	200 to 230
B1	LECSB1-S \square	100 to 120
B2	LECSB2-S \square	200 to 230
C1	LECSC1-S \square	100 to 120
C2	LECSC2-S \square	200 to 230
S1	LECSS1-S \square	100 to 120
S2	LECSS2-S \square	200 to 230
	LECSS2-T \square	200 to 240

* When the driver type is selected, the cable is included. Select cable type and cable length. Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2: Standard cable (2 m)
-: Without cable and driver

Compatible Driver

Driver type	Pulse input type /Positioning type	Pulse input type	CC-Link direct input type	SSCNET III type	Iscivermin Type
Series	LECSA	LECSB	LECSC	LECSS	LECSS-T
Number of point tables	Up to 7	-	Up to 255 (2 stations occupied)	-	-
Pulse input	\bigcirc	\bigcirc	-	-	-
Applicable network	-	-	CC-Link	SSCNET III	SSCNET III/H
Control encoder	Incremental 17-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 22-bit encoder
Communication function	USB communication	USB communicaion, RS422 communication	USB communication, RS422 communication	USB communication	USB communication
Power supply voltage [V]		100 to 120 V 200 to 230 V	$\begin{aligned} & \text { AC }(50 / 60 \mathrm{~Hz}) \\ & \text { AC }(50 / 60 \mathrm{~Hz}) \end{aligned}$		200 to 240 VAC ($50 / 60 \mathrm{~Hz}$)
Reference page		Page	173		Page 189

人

Specifications

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders. Note 2) The maximum value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Please confirm using actual device.
Note 3) The force setting range (set values for the driver) for the force control with the torque control mode. Set it with reference to "Force Conversion Graph" on page 131. When the control equivalent to the pushing operation of the controller LECP series is performed, select the LECSS driver and combine it with the Simple Motion (manufactured by Mitsubishi Electric Corporation) which has a pushing operation function.
Note 4) The allowable speed changes according to the stroke. Set the number of rotations according to speed.
Note 5) The allowable collision speed for collision with the workpiece with the torque control mode.
Note 6) A reference value for correcting an error in reciprocal operation.
Note 7) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was
performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz .
Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 8) The work load conditions which require "Regeneration option" when operating at the maximum speed (Duty ratio: 100%). Order the regeneration option separately. For details and order numbers, refer to "Required Conditions for Regeneration Option" on pages 129 and 130 .
Note 9) The power consumption (including the driver) is for when the actuator is operating.
Note 10) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 11) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 12) Only when motor option "With lock" is selected.
Note 13) For an actuator with lock, add the power consumption for the lock.

Weight

Product Weight																				
Series	LEY25S \square (Motor mounting position: Top/Parallel)									LEY32S \square (Motor mounting position: Top/Parallel)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
흔 이 Incremental encoder	1.31	1.38	1.55	1.81	1.99	2.16	2.34	2.51	2.69	2.42	2.53	2.82	3.29	3.57	3.85	4.14	4.42	4.70	4.98	5.26
${ }_{2}$	1.37	1.44	1.61	1.87	2.05	2.22	2.40	2.57	2.75	2.36	2.47	2.76	3.23	3.51	3.79	4.08	4.36	4.64	4.92	5.20
Series	LEY25DS \square (Motor mounting position: In-line)									LEY32DS \square (Motor mounting position: In-line)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
흥 응 Incremental encoder	1.34	1.41	1.58	1.84	2.02	2.19	2.37	2.54	2.72	2.44	2.55	2.84	3.31	3.59	3.87	4.16	4.44	4.72	5.00	5.28
을 Absolute encoder	1.40	1.47	1.64	1.90	2.08	2.25	2.43	2.60	2.78	2.38	2.49	2.78	3.25	3.53	3.81	4.10	4.38	4.66	4.94	5.22

Additional Weight

Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	Incremental encoder	0.20	0.40
	Absolute encoder	0.30	0.66
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot (2 sets including mounting bolt)	0.08	0.14	
Rod flange (including mounting bolt)	0.17	0.20	
Head flange (including mounting bolt)			
Double clevis (including pin, retaining ring and mounting bolt)	0.16	0.22	

Construction

Motor top mounting type: LEY ${ }_{32}^{25}$

In-line motor type: $\operatorname{LEY}{ }_{32}{ }^{25}$ D

Component Parts

No.	Description	Material	Note
1	Body	Aluminium alloy	Anodised
2	Ball screw (shaft)	Alloy steel	
3	Ball screw nut	Resin/Alloy steel	
4	Piston	Aluminium alloy	
5	Piston rod	Stainless steel	Hard chrome Anodised
6	Rod cover	Aluminium alloy	
7	Housing	Aluminium alloy	
8	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plated
10	Connected shaft	Free cutting carbon steel	Nickel plated
11	Bushing	Lead bronze cast	
12	Bumper	Urethane	
13	Bearing	-	
14	Return box	Aluminium die-cast	Coating
15	Return plate	Aluminium die-cast	Coating
16	Magnet	-	
17	Wear ring holder	Stainless steel	Stroke 101 mm or more
18	Wear ring	POM	Stroke 101 mm or more
19	Screw shaft pulley	Aluminium alloy	
20	Motor pulley	Aluminium alloy	
21	Belt	-	
22	Bearing stopper	Aluminium alloy	
23	Parallel pin	Stainless steel	

No.	Description	Material	Note
$\mathbf{2 4}$	Seal	NBR	
25	Retaining ring	Steel for spring	Phosphate coated
$\mathbf{2 6}$	Motor adapter	Aluminium alloy	Coating
$\mathbf{2 7}$	Motor	-	
28	Motor block	Aluminium alloy	Coating
29	Hub	Aluminium alloy	
30	Spider	Urethane	
31	Socket (Male thread)	Free cutting carbon steel	Nickel plated
32	Nut	Alloy steel	Zinc chromated

Replacement Parts (Top/Parallel only)/Belt

No.	Size	Order no.
21	25	LE-D-2-2
	32	LE-D-2-4

Replacement Parts/Grease Pack	
Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

* Apply grease on the piston rod periodically.

Grease should be applied at 1 million cycles or 200 km , whichever comes first.

Series LEY

Dimensions: Motor Top/Parallel

Section XX details

Note 1) Range within which the rod can move. Make sure a workpiece mounted on the rod does not
interfere with the workpieces and facilities around the rod.
Note 2) The direction of rod end width across flats $(\square K)$ differs depending on the products.

Body Bottom Tapped
[mm]

Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100				41						
	101 to 124						75				
	125 to 200			59	49.5						
	201 to 400			76	58						
32	20 to 39	25	55	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100			36	43		50				
	101 to 124						80				
	125 to 200			53	51.5						
	201 to 500			70	60						

Dimensions: Motor Top/Parallel

Motor left side parallel type: $\operatorname{LEY}_{32}^{25} \mathrm{~L}$

$$
\text { Motor right side parallel type: } \operatorname{LEY}_{32}^{25} R
$$

\[

\]

Note) When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

Dimensions: In-line Motor

Note 1) Range within which the rod can move.
Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) The direction of rod end width across flats $(\square \mathrm{K})$ differs depending on the products.

Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	101 to 124					75				
	125 to 200		59	49.5						
	201 to 400		76	58						
32	20 to 39	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100		36	43		50				
	101 to 124					80				
	125 to 200		53	51.5						
	201 to 500		70	60						

Dimensions

End male thread: $\operatorname{LEY}_{32}^{25} \stackrel{A}{\square}-\square \square M$

* Refer to page 25 for details about the rod end nut and mounting bracket.
Note) Refer to the precautions on page 169 when mounting end brackets such as knuckle joint or workpieces.

		[mm]				
Size	\mathbf{B}_{1}	\mathbf{C}_{1}	\mathbf{H}_{1}	\mathbf{L}_{1}	\mathbf{L}_{2}	$\mathbf{M M}$
$\mathbf{2 5}$	22	20.5	8	38	23.5	$\mathrm{M} 14 \times 1.5$
$\mathbf{3 2}$	22	20.5	8	42.0	23.5	$\mathrm{M} 14 \times 1.5$

* The L_{1} measurement is when the unit is in the original position. At this position, 2 mm at the end.

Included parts - Foot - Body mounting bolt

Outward mounting

[mm]														
Size	Stroke range [mm]	A	LS	LS 1	LL	LD	LG	LH	LT	LX	LY	LZ	X	Y
25	15 to 100	136.6	98.8	19.8	8.4	6.6	3.5	30	2.6	57	51.5	71	11.2	5.8
	101 to 400	161.6	123.8											
32	20 to 100	155.7	114	19.2	11.3	6.6	4	36	3.2	76	61.5	90	11.2	7
	101 to 500	185.7	144											

Material: Carbon steel (Chromate treated)

* The A measurement is when the unit is in the Z-phase first detecting position. At this position, 2 mm at the end.
Note) When the motor mounting is the right or left side parallel type, the head side foot should be mounted outwards.

Series LEY

Dimensions

Rod/Head Flange

Rod/Head Flange					[mm]			
Size	FD	FT	FV	FX	FZ	LL	M	
$\mathbf{2 5}$	5.5	8	48	56	65	6.5	34	
$\mathbf{3 2}$	5.5	8	54	62	72	10.5	40	

Material: Carbon steel (Nickel plated)

Included parts

- Double clevis
- Body mounting bolt
- Clevis pin
- Retaining ring
* Refer to page 25 for details about the rod end nut and mounting bracket.
Double Clevis
[mm]

Size	Stroke range [mm]	A	CL	CD	CT
$\mathbf{2 5}$	10 to 100	160.5	150.5	10	5
	101 to 200	185.5	175.5		
	10 to 100	180.5	170.5	6	
	101 to 200	210.5	200.5		

Size	Stroke range [mm]	CU	CW	CX	CZ	L	RR
25	10 to 100	14	20	18	36	14.5	10
	101 to 200						
32	10 to 100	14	22	18	36	18.5	10
	101 to 200						

Material: Cast iron (Coating)

* The A and CL measurements are when the unit is in the Z phase first detecting position. At this position, 2 mm at the end.

Specific Product Precautions	LECY \square	LECSS-T	LECS \square	AC Servo Motor		JXC738892923	JXC $\square 1$	LECPA	LECP1	LEC-G	$\begin{aligned} & \text { LECA6 } \\ & \text { LECP6 } \end{aligned}$			ModelSelection
				LEYG	LEY							LEYG	LEY	

Electric Actuator/
 Rod Type
 Series LEY
 LEY63
 Size
 63

RoHS

How to Order

1 Accuracy		
-		
-		
H		
High precisision		
$\mathbf{5}$ Lead [mm]		
Symbol		LEY63
A		
B		
C		
L		

6	Stroke $[\mathrm{mm}]$
$\mathbf{1 0 0}$	100
to	to
$\mathbf{8 0 0}$	800

* Screw lead 5 mm, Pulley ratio [4:7] equivalent lead
* Only available for top mounting and right/left side parallel types.

7 Dust-tight/Water-jet-proof

-	IP5x equivalent (Dust-protected)
\mathbf{P}	IP65 equivalent (Dust-tight/Water-jet-proof)/ With vent hole tap

* When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water.
* The fitting and tubing should be provided separately by the customer. Select [Applicable tubing O.D.: Ø 4 or more, Connection thread: Rc1/8].
* Cannot be used in environments exposed to cutting oil etc. Take suitable protective measures.

12 Cable length ${ }^{\text {Note } 2)}$ [m]

$\boldsymbol{-}$	Without cable $^{\text {[}}$
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

Note 2) The length of the encoder, motor and lock cables are the same.

11 Cable type Note 1)

-	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

Note 1) The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)

* Standard cable entry direction is
- Top/Parallel: (A) Axis side
- In-line: (B) Counter axis side
(Refer to page 185 for details.)
* Applicable stroke table

14 I/O cable length [m] ${ }^{*}$

-	Without cable
H	Without cable (Connector only)
$\mathbf{1}$	1.5

* When "Without driver" is selected for driver type, only "一: Without cable" can be selected.
Refer to page 186 if I / O cable is required. (Options are shown on page 186.)

4 Motor type*1					
Symbol	Type	Output [W]	Actuator size	Compatible driver	UL- Compliant
S4	AC servo motor (Incremental encoder)	400	63	LECSA2-S4	-
S8	AC servo motor (Absolute encoder)	400	63	LECSB2-S8 LECSC2-S8 LECSS2-S8	-
T8	AC servo motor (Absolute encoder)	400	63	LECSS2-T8	\bullet

Mounting ${ }^{* 1}$

Symbol	Type	Motor mounting position	
		Top/Parallel	In-line
-	Ends tapped/ Body bottom tapped	\bullet	-
L	Foot	\bullet	-
F	Rod flange*2 2	\bullet	-
D	Double clevis*3 2	\bullet	-

*1 Mounting bracket is shipped together, (but not assembled).
*2 For horizontal cantilever mounting with the rod flange and ends tapped, use the actuator within the following stroke range.

- LEY63: 400 mm or less
*3 For mounting with the double clevis, use the actuator within the following stroke range.
- LEY63: 300 mm or less

13 Driver type

	Compatible driver	Power supply voltage	UL-Compliant
-	Without driver		-
A2	LECSA2/Pulse input (Incremental encoder)	200 V to 230 V	-
B2	LECSB2/Pulse input (Absolute encoder)	200 V to 230 V	-
C2	LECSC2/CC-Link (Absolute encoder)	200 V to 230 V	-
S2	LECSS2-S/SSCNETIII (Absolute encoder)	200 V to 230 V	-
	LECSS2-TD/SSCNETIII/H (Absolute encoder)	200 V to 240 V	-

* When the driver type is selected, the cable is included.

Select cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)

- : Without cable and driver
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline \text { Model } & \begin{array}{r}\text { Stroke } \\ {[\mathrm{mm}]}\end{array} & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 600 & 700 & 800\end{array} \begin{array}{c}\text { Manufacturable } \\ \text { stroke range }\end{array}\right]$

[^15]Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders. condition of the external guide. Please confirm using actual device.
Note 3) Set values for the driver.
Note 4) The force setting range (set values for the driver) for the force control with the torque control mode. The force and duty ratio change according to the set value. Set it with reference to "Force Conversion Graph" on page 131. When the control equivalent to the pushing operation of the controller LECP series is performed, select the LECSS driver and combine it with the Simple Motion (manufactured by Mitsubishi Electric Corporation) which has a pushing operation function.
Note 5) The allowable speed changes according to the stroke. Set the number of rotations according to speed.
Note 6) The allowable collision speed for collision with the workpiece with the torque control mode.
Note 7) A reference value for correcting an error in reciprocal operation.
Note 8) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 9) When mounting vertically and using the product facing upwards in an environment where water is present, take necessary measures to prevent water from splashing on the rod cover, because water will accumulate on the rod seal due to the structure of the product.
Note 10) The power consumption (including the driver) is for when the actuator is operating.
Note 11) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 12) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 13) Only when motor option "With lock" is selected.
Note 14) For an actuator with lock, add the power consumption for the lock.

Weight

Product Weight														[kg]
	Series	LEY63S ${ }_{8}^{4}$ (Motor mounting position: Top/Parallel)												
	Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
	Incremental encoder	4.9	5.4	6.0	6.6	7.8	8.3	8.9	9.4	10.0	10.5	12.2	13.4	14.5
	Absolute encoder (Motor type S8)	5.0	5.5	6.1	6.7	7.9	8.4	9.0	9.5	10.1	10.6	12.3	13.5	14.6
	Absolute encoder (Motor type T8)	4.9	5.4	6.0	6.6	7.8	8.3	8.9	9.4	10.0	10.5	12.2	13.4	14.5
	Series	LEY63DS ${ }_{8}^{4}$ (Motor mounting position: In-line)												
	Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
$\begin{aligned} & 0 \\ & 2 \\ & 2 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Incremental encoder	5.1	5.6	6.2	6.7	7.9	8.4	9.0	9.6	10.2	10.7	12.4	13.5	14.7
	Absolute encoder (Motor type S8)	5.2	5.7	6.3	6.8	8.0	8.5	9.1	9.7	10.3	10.8	12.5	13.6	14.8
	Absolute encoder (Motor type T8)	5.1	5.6	6.2	6.7	7.9	8.4	9.0	9.6	10.2	10.7	12.4	13.5	14.7

Additional Weight
Size $[\mathrm{kg}]$ Lock Incremental encoder 03 Absolute encoder (Motor type S8) 0.4 Absolute encoder (Motor type T8) 0.4 Rod end male thread Male thread Nut Foot (2 sets including mounting bolt) 0.0 .26 Rod flange (including mounting bolt) 0.51 Double clevis (including pin, retaining ring and mounting bolt) 0.58

Series LEY

Construction

Motor top mounting type: LEY63

In-line motor type: LEY63D

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminium alloy	Anodised
$\mathbf{2}$	Ball screw shaft	Alloy steel	
3	Ball screw nut	Resin/Alloy steel	
4	Piston	Aluminium alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminium alloy	
7	Bearing holder	Aluminium alloy	
8	Rotation stopper	Resin	
9	Socket	Free cutting carbon steel	Nickel plating
10	Bushing	Lead bronze cast	
11	Bearing	-	
12	Return box	Aluminium alloy	Coating
13	Return plate	Aluminium alloy	Coating
14	Magnet	-	
15	Wear ring holder	Stainless steel	

No.	Description	Material	Note
$\mathbf{1 6}$	Wear ring	Resin	
$\mathbf{1 7}$	Screw shaft pulley	Aluminium alloy	
$\mathbf{1 8}$	Motor pulley	Aluminium alloy	
$\mathbf{1 9}$	Belt	-	
$\mathbf{2 0}$	Lock nut	Alloy steel	Black dyed
$\mathbf{2 1}$	Seal	NBR	
$\mathbf{2 2}$	Retaining ring	Steel for spring	
$\mathbf{2 3}$	Motor adapter	Aluminium alloy	Coating
$\mathbf{2 4}$	Motor	-	
25	Socket (Male thread)	Free cutting carbon steel	Nickel plating
26	Nut	Alloy steel	Trivalent chromated
27	Motor block	Aluminium alloy	Coating
28	Spacer A	Stainless steel	
29	Hub	Aluminium alloy	
30	Spider	Urethane	

Replacement Parts (Top/Parallel only)/Belt

No.	Size	Lead	Order no.
19	63	A/B/C	LE-D-2-5
		L	LE-D-2-6

Replacement Parts/Grease Pack	
Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

[^16]
Dimensions: Motor Top/Parallel

Note 1) Range within which the rod can move.
Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

IP65 equivalent (Dust-tight/Water-jet-proof): LEY63 $\square \square \square-\square \mathbf{P}$ (View ZZ)

* When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer.
Select [Applicable tubing O.D.: $\varnothing 4$ or more, Connection thread: Rc1/8].

Size	Stroke range [mm]	A	B	C	D	EH	EV	H	J	K	L	M	O_{1}	R	S	Y
63	Up to 200	192.6	155.2	2	40	76	82	M16 x 2	44	36	37.4	60	M8 x 1.25	1	80	32.2
	205 to 500	227.6	190.2													
	505 to 800	262.6	225.2													
Size	Stroke range [mm]	T	U	V	Incremental encoder						Absolute encoder					
					Without lock			With lock			Without lock			With lock		
					W	X	Z	W	X	Z	W	X	Z	W	X	Z
63	Up to 200	146	4	60	110.2	150.2	$\begin{gathered} 15.6 \\ (16.6)^{*} \end{gathered}$	138.8	178.8	$\begin{gathered} 15.6 \\ (16.6)^{*} \end{gathered}$	98.5	138.5	$\begin{gathered} 15.6 \\ (16.6)^{*} \end{gathered}$	138	178	$\begin{gathered} 15.6 \\ (16.6)^{*} \end{gathered}$
	205 to 500															
	505 to 800															

* The values in () are the dimensions when L is selected for screw lead.

Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
63	50 to 74	38	24	50	44		M8 x 1.25	10	6	7
	75 to 124		45	60.5		65				
	125 to 200		58	67						
	201 to 500		86	81		100				
	501 to 800					135				

Series LEY

Dimensions: Motor Top/Parallel

Motor left side parallel type: LEY63L

Motor right side parallel type: LEY63R

$[\mathrm{mm}]$			
Size	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$	\mathbf{U}
$\mathbf{6 3}$	84	142	4

Note) When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

Dimensions: In-line Motor

does not interfere with the workpieces and facilities around the rod.
Note 2) The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

Size	Stroke range [mm]	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U
63	Up to 200	21	40	76	82	M16 x 2	44	36	37.4	60	M8 x 1.25	16	78	83	5
	205 to 500														
	505 to 800														
Size	Stroke range [mm]	B	V	Incremental encoder						Absolute encoder					
				Without lock			With lock			Without lock			With lock		
				A	W	Z	A	W	Z	A	W	Z	A	W	Z
63	Up to 200	190.7	60	338.3	110.2	8.1	366.9	138.8	8.1	326.6	98.5	8.1	366.1	138	8.1
	205 to 500	225.7		373.3			401.9			361.6			401.1		
	505 to 800	260.7		408.3			436.9			396.6			436.1		

Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
63	50 to 74	38	24	50	44	65	M8 x 1.25	10	6	7
	75 to 124		45	60.5						
	125 to 200		58	67						
	201 to 500		86	81		100				
	501 to 800					135				

IP65 equivalent (Dust-tight/Water-jet-proof): LEY63D $\square \square-\square \mathbf{P}$
(View ZZ)

* When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer.
Select [Applicable tubing O.D.: Ø 4 or more, Connection thread: Rc1/8].

Dimensions

End male thread: LEY63 $\square \square \square-\square \square \mathrm{M}$

* The measurement 76.4 is when the unit is in the Z-phase detecting position. At this position, 4 mm from the end of the operating range.

Foot: LEY63 $\square \square \square-\square \square L$

Included parts
- Foot
- Body mounting bolt

Material: Carbon steel (Chromate treated)

* The overall length is when the unit is in the Z-phase detecting position. At this position, 4 mm from the end of the operating range.
Note) When the motor mounting is the right or left side parallel type, the head side foot should
be mounted outwards.

	$[\mathrm{mm}]$	
Stroke range $[\mathrm{mm}]$	LA	LS
50 to 200	200.8	133.2
201 to 500	235.8	168.2
501 to 800	270.8	203.2

Rod flange: LEY63 $\square \square \square-\square \square \mathrm{F}$

Material: Carbon steel (Nickel plating)

* When the unit is in the Z-phase detecting position. At this position, 4 mm from the end of the operating range.

Double clevis: LEY63 $\square \square \square-\square \square D$

	$[\mathrm{mm}]$	
Stroke range $[\mathrm{mm}]$	DA	CL
50 to 200	236.6	222.6
201 to 500	271.6	257.6
501 to 800	306.6	292.6

Material: Cast iron (Coating)

* The overall length is when the unit is in the Z-phase detecting position. At this position, 4 mm from the end of the operating range.

How to Order

5 Lead [mm]

Symbol	LEY25	LEY32 \square^{*}
A	12	$16(20)$
B	6	$8(10)$
C	3	$4(5)$

* The values shown in () are the equivalent lead which includes the pulley ratio for size 32 top mounting type.

8 Rod end thread

-	Rod end female thread
\mathbf{M}	Rod end male thread $(1$ rod end nut is included.)

$\mathbf{-}$	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

* The length of the encoder, motor and lock cables are the same.
(13) Io cable length $[m]^{*}$

$\overline{-}$	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

* When "Without driver" is selected for driver type, only "一: Without cable" can be selected. Refer to page 186 if I/O cable is required. (Options are shown on page 186.)
(9) Mounting*1

Symbol	Type	Motor mounting position	
		In-line	
-	Ends tapped/ Body bottom tapped	$\bullet 2$	\bullet
\mathbf{L}	Foot	\bullet	-
F	Rod flange*2 *	$\bullet * 3$	\bullet
G	Head flange*2 *	$\bullet^{* 4}$	-

*1 Mounting bracket is shipped together, (but not assembled).
*2 For horizontal cantilever mounting with the rod flange, head flange and ends tapped, use the actuator within the following stroke range. -LEY25: 200 mm or less
-LEY32: 100 mm or less
*3 Rod flange is not available for the LEY25 with stroke 30 mm and motor option "With lock".
*4 Head flange is not available for the LEY32.

6 Stroke [mm]	
30	30
to	to
500	500

* Refer to the applicable stroke table.

* Applicable Stroke Table

- Standard												
Stroke Model	30	50	100	150	200	250	300	350	400	450	500	Manufacturable stroke range [mm]
LEY25	-	-	-	-	-	-	-	-	-	-	-	15 to 400
LEY32	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	20 to 500

For motor type S2 and S6, the compatible driver part number suffixes are S1 and S5 respectively.
7 Motor option

-	Without option
B	With lock*

* When "With lock" is selected for the top mounting type, the motor body will stick out of the end of the body for size 25 with strokes 30 mm or less. Check for interference with workpieces before selecting a model.

Cable type*

-	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

* The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
* Standard cable entry direction is
- Top mounting: (A) Axis side - In-line: (B) Counter axis side (Refer to page 185 for details.)

2 Driver type*

-	Compatible driver	Power supply voltage [V]
A1	Without driver	-
A2	LECSA1	100 to 120
B1	LECSB1	200 to 230
B2	LECSB2	100 to 120
C1	LECSC1	100 to 230
C2	LECSC2	200 to 230
S1	LECSS1	100 to 120
S2	LECSS2	200 to 230

* When the driver type is selected, the cable is included. Select cable type and cable length. Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
- : Without cable and driver

[^17]
Series LEY-X5

Specifications

Model				LEY25S ${ }_{6}^{2}$ /LEY25DS ${ }_{6}^{2}$			LEY32S ${ }_{7}^{3}$ (Top mounting)			LEY32DS ${ }_{7}^{3}$ (In-line)		
Stroke [mm] ${ }^{\text {Note 1) }}$				$\begin{gathered} 30,50,100,150,200 \\ 250,300,350,400 \end{gathered}$			$\begin{gathered} 30,50,100,150,200,250 \\ 300,350,400,450,500 \end{gathered}$			$\begin{gathered} 30,50,100,150,200,250 \\ 300,350,400,450,500 \end{gathered}$		
	Work load [kg]	Horizontal Note 2)		18	50	50	30	60	60	30	60	60
		Vertica	(Note 10)	8	16	30	9	19	37	12	24	46
	Force [$\mathrm{N}{ }^{\text {Note } 3)}$ (Set value: 15 to 30%)			65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max Note 4)	Stroke range	Up to 300	900	450	225	1200	600	300	1000	500	250
			305 to 400	600	300	150						
			405 to 500	-	-	-	800	400	200	640	320	160
	Pushing speed [mm/s] ${ }^{\text {Note 5) }}$			35 or less			30 or less			30 or less		
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5000			5000					
	Positioning repeatability [mm]		Basic type	± 0.02								
			High precision type	± 0.01								
	Lost motion [mm] ${ }^{\text {Note } 6)}$		Basic type	0.1 or less								
			High precision type	0.05 or less								
	Lead [mm]			12	6	3	20 Note 7)	$10^{\text {Note 7) }}$	5 Note 7)	16	8	4
	Impact/Vibration resistance [m/s ${ }^{2}$] Note 8)			50/20			50/20					
	Actuation type			Ball screw + Belt/Ball screw			Ball screw + Belt			Ball screw		
	Guide type			Sliding bushing (Piston rod)			Sliding bushing (Piston rod)					
	Enclosure Note 9)			IP65 equivalent								
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40			5 to 40					
	Operating hu	midity rang	e [\%RH]	90 or less (No condensation)			90 or less (No condensation)					
	Regeneration option			May be required depending on speed and work load. (Refer to LEY catalogue conditions for "Regeneration Option")								
	Motor output/Size			$100 \mathrm{~W} / \square 40$			200 W/ $\square 60$					
	Motor type			AC servo motor (100/200 VAC)			AC servo motor (100/200 VAC)					
	Encoder			Motor type S2, S3: Incremental 17-bit encoder (Resolution: 131072 p/rev) Motor type S6, S7: Absolute/incremental dual 18-bit encoder (Resolution: 262144 p/rev)								
	Power consumption [W] Note 11)		Horizontal	45			65			65		
			Vertical	145			175			175		
	Standby power consumption when operating [W] Note 12)		Horizontal	2			2			2		
			Vertical	8			8			8		
	Max. instantaneous power consumption [W] ${ }^{\text {Note } 13)}$			445			724			724		
	Type Note 14)			Non-magnetizing lock								
	Holding force [N]			131	255	485	157	308	588	197	385	736
	Power consumption [W] at $20^{\circ} \mathrm{C}$ Note 15)			6.3			7.9			7.9		
				24 VDC								

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders
Note 2) The maximum value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Please confirm using actual device.
Note 3) The force setting range (set values for the driver) for the force control with the torque control mode. Set it with reference to "Force Conversion Graph" on page 131. When the control equivalent to the pushing operation of the controller LECP series is performed, select the LECSS driver and combine it with the Simple Motion (manufactured by Mitsubishi Electric Corporation) which has a pushing operation function. Note 4) The allowable speed changes according to the stroke. Set the number of rotations according to speed. Note 5) The allowable collision speed for collision with the workpiece with the torque control mode
Note 6) A reference value for correcting an error in reciprocal operation.
Note 7) Equivalent lead which includes the pulley ratio [1.25:1]
Note 8) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)

Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 9) Cannot be used in an environment where oil such as cutting oil splashes or it is constantly exposed to water. Take suitable protective measures.
Note 10) When mounting vertically and using the product facing upwards in an environment where water is present, take necessary measures to prevent water from splashing on the rod cover, because water will accumulate on the rod seal due to the structure of the product.
Note 11) The power consumption (including the driver) is for when the actuator is operating.
Note 12) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 13) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 14) Only when motor option "With lock" is selected.
Note 15) For an actuator with lock, add the power consumption for the lock.

Weight

Product Weight

	Series																				
	Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
	Incremental encoder	1.31	1.38	1.55	1.81	1.99	2.16	2.34	2.51	2.69	2.42	2.53	2.82	3.29	3.57	3.85	4.14	4.42	4.70	4.98	5.26
	Absolute encoder	1.37	1.44	1.61	1.87	2.05	2.22	2.40	2.57	2.75	2.36	2.47	2.76	3.23	3.51	3.79	4.08	4.36	4.64	4.92	5.20
		LEY25DS \square (Motor mounting position: In-line)									LEY32DS \square (Motor mounting position: In-line)										
Stroke [mm]		30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
	Incremental encoder	1.34	1.41	1.58	1.84	2.02	2.19	2.37	2.54	2.72	2.44	2.55	2.84	3.31	3.59	3.87	4.16	4.44	4.72	5.00	5.28
	Absolute encoder	1.40	1.47	1.64	1.90	2.08	2.25	2.43	2.60	2.78	2.38	2.49	2.78	3.25	3.53	3.81	4.10	4.38	4.66	4.94	5.22

Additional Weight

Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	Incremental encoder	0.20	0.40
	Absolute encoder	0.30	0.66
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot (2 sets including mounting bolt)	0.08	0.14	
Rod flange (including mounting bolt)	0.17	0.20	
Head flange (including mounting bolt)			

Construction

Motor top mounting type: LEY_{32}^{25}

In-line motor type: $\operatorname{LEY}_{32}^{25} \mathrm{D}$

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminium alloy	Anodised
$\mathbf{2}$	Ball screw (shaft)	Alloy steel	
$\mathbf{3}$	Ball screw nut	Resin/Alloy steel	
$\mathbf{4}$	Piston	Aluminium alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome Anodised
$\mathbf{6}$	Rod cover	Aluminium alloy	
$\mathbf{7}$	Housing	Aluminium alloy	
$\mathbf{8}$	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plated
$\mathbf{1 0}$	Connected shaft	Free cutting carbon steel	Nickel plated
11	Bushing	Lead bronze cast	
$\mathbf{1 2}$	Bumper	Urethane	
13	Bearing	-	
14	Return box	Aluminium die-cast	Coating
15	Return plate	Aluminium die-cast	Coating
16	Magnet	-	
17	Wear ring holder	Stainless steel	Stroke 101 mm or more
$\mathbf{1 8}$	Wear ring	POM	Stroke 101 mm or more

No.	Description	Material	Note
19	Screw shaft pulley	Aluminium alloy	
20	Motor pulley	Aluminium alloy	
21	Belt	-	
22	Bearing stopper	Aluminium alloy	
23	Parallel pin	Stainless steel	
24	Scraper	Nylon	
25	Retaining ring	Steel for spring	Nickel plated
26	Motor adapter	Aluminium alloy	Coating
27	Motor	-	
28	Lub-retainer	Felt	
29	O-ring	NBR	
30	Gasket	NBR	
31	O-ring	NBR	
32	Motor block	Aluminium alloy	Coating
33	Hub	Aluminium alloy	
34	Spider	Urethane	
35	Socket (Male thread)	Free cutting carbon steel	Nickel plated
36	Nut	Alloy steel	Zinc chromated

Replacement Parts (Top mounting only)/Belt		
No.	Size	Order no.
21	25	LE-D-2-2
	32	LE-D-2-4

Replacement Parts/Grease Pack

Applied portion
Piston rod

Series LEY-X5

Dimensions

Motor top mounting type: LEY_{32}^{25}

Size	Stroke range [mm]	A	B	C	D	EH	EV	H		J	K	L	M	O1		R	PA	PB	V
25	15 to 100	130.5	116	13	20	44	45.5	M8 x 1.25		24	17	14.5	34	M5 x 0.8		8	15.4	8.2	40
25	101 to 400	155.5	141																
32	20 to 100	148.5	130	13	25	51	56.5	M8 x 1.25		31	22	18.5	40	M6 x 1.0		10	15.4	8.2	60
	101 to 500	178.5	160																
Size	Stroke range [mm]	S	T	U	PC	Incremental encoder						Absolute encoder						Y	
							hout lo			Vith loc			thout lock			Vith loc			
						W	X	Z	W	X	Z	W	X	Z	W	X	Z		
25	15 to 100	46	92	1	15.4	87	120	14.1	123.9	156.9	15.8	82.4	115.4	14.1	123.5	156.5	15.8	51	
	101 to 400																		
32	20 to 100	60	118	1	15.9	88.2	128.2	17.1	116.8	156.8	17.1	76.6	116.6	17.1	116.1	156.1	17.1	61	
32	101 to 500										17.1	76.6	116.6	17.1	116.1	156.1	17.1	61	

Body Bottom Tapped

Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100			42	41						
	101 to 124						75				
	125 to 200			59	49.5						
	201 to 400			76	58						
32	20 to 39	25	55	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100			36	43		50				
	101 to 124						80				
	125 to 200			53	51.5						
	201 to 500			70	60						

Note 1) Range within which the rod can move. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
Note 3) The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole. Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

For the rod end male thread, refer to page 138. For the mounting bracket dimensions, refer to page 25.

Dimensions

In-line motor type: $\operatorname{LEY}_{32}^{25} \mathrm{D}$

Size	Stroke range [mm]	Incremental encoder						Absolute encoder						B	C	D	EH	EV		
		Without lock			With lock			Without lock			With lock									
		A	W	Z	A	W	Z	A	W	Z	A	W	Z							
25	15 to 100	238	87	14.6	274.9	123.9	16.3	233.4	82.4	14.6	274.5	123.5	16.3	136.5	13	20	44	45.5		
	101 to 400	263			299.9			258.4			299.5			161.5						
32	20 to 100	262.7	88.2	17.1	291.3	116.8	17.1	251.1	76.6	17.1	290.6	116.1	17.1	156	13	25	51	56.5		
	101 to 500	292.7			321.3			281.1			320.6			186						
Size	Stroke range [mm]	H		J	K	L	M	O1		R	PA	PB	V	S	T	U	PC	Y		
25	15 to 100	M8 x 1.25		24	17	14.5	34	M5 x 0.8		8	15.4	8.2	40	45	46.5	1.5	15.9	71.5		
	101 to 400																			
32	20 to 100	M8 x 1.25		31	22	18.5	40	M6x 1.0		10	15.4	8.2	60	60	61	1	15.9	87		
	101 to 500																			

Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	101 to 124		42			75				
	125 to 200		59	49.5						
	201 to 400		76	58						
32	20 to 39	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100		36	43						
	101 to 124					80				
	125 to 200		53	51.5						
	201 to 500		70	60						

Note 1) Range within which the rod can move. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
Note 3) The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole. Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

Electric Actuator/Rod Type

AC Servo Motor

Series 25A-LEY C ϵ crab LEY25, 32

How to Order

- \quad Basic Type

H \quad High precision type

(5) Lead [mm]

Symbol	LEY25	LEY32* *
A	12	$16(20)$
B	6	$8(10)$
C	3	$4(5)$

* The values shown in () are the lead for size 32 top mounting, right/left side parallel types. (Equivalent lead which includes the pulley ratio [1.25:1])

6 Stroke [mm]

30	30
to	to
500	500

* Refer to the table below for details.

8 Rod end thread

-	Female rod end
\mathbf{M}	Male rod end
(1 rod end nut is included.)	

(4) Motor type* ${ }^{*}$

Symbol	Type	Output [W]	Actuator size	Compatible drivers*2
S2	AC servo motor (Incremental encoder)	100	25	LECSA \square-S1
S3	AC servo motor (Incremental encoder)	200	32	LECSA \square-S3
S6	AC servo motor (Absolute encoder)	100	25	LECSB \square-S5 LECSC LECSS \square-S5
S7	AC servo motor (Absolute encoder)	200	32	LECSB \square-S7 LECSC■-S7 LECSS \square-S7

*1 For motor type S2 and S6, the compatible driver part number suffixes are S1 and S5 respectively. *2 For details about the driver, refer to the website www.smc.eu.

Mounting Bracket Part No. for Series 25A-

Applicable size	Foot*1 $^{* 1}$	Flange	Double clevis
$\mathbf{2 5}$	25-LEY-L025	25-LEY-F025	$25-$ LEY-D025
$\mathbf{3 2}$	$25-$ LEY-L032	25-LEY-F032	$25-$ LEY-D032
Surface treatment	RAYDENT ${ }^{\circledR}$	RAYDENT®	Coating (Size 16: Electroless nickel plating)

*1 When ordering foot brackets, order 2 pieces per actuator.
*2 Parts belonging to each bracket are as follows.
Foot, Flange: Body mounting bolt, Double clevis: Clevis pin, Type C retaining ring for axis, Body mounting bolt

* When "With lock" is selected for the top mounting and right/left side parallel types, the motor body will stick out of the end of the body for size 25 with strokes 30 or less. Check for interference with workpieces before selecting a model.

Mounting* ${ }^{*}$

Symbol	Type	Motor mounting position	
		Toop Parallel	In-line
-	Ends tapped (Standard)*2		
L	Foot		-
F	Rod flange*2 *	${ }^{* 4}$	
G	Head flange $^{* 2}$	$\bigcirc^{* 5}$	-
D	Double clevis*3		-

*1 Mounting bracket is shipped together, (but not assembled).
*2 For horizontal cantilever mounting with the rod flange, head flange and ends tapped, use the actuator within the following stroke range.
LEY25: 200 or less • LEY32: 100 or less
*3 For mounting with the double clevis, use the actuator within the following stroke range. LEY25: 200 or less . LEY32: 200 or less
*4 Rod flange is not available for the LEY25 with stroke 30 and motor option "With lock". *5 Head flange is not available for the LEY32.

* Applicable stroke table												- Standard
Model	30	50	100	150	200	250	300	350	400	450	500	Manufacturable stroke range [mm]
LEY25	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-	-	15 to 400
LEY32	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	20 to 500

[^18]For details about auto switches, refer to "Series Compatible with Secondary Batteries".

Applicable auto switches

D-M9N(V)-900, D-M9P(V)-900, D-M9B(V)-900
D-M9NW(V)-900, D-M9PW(V)-900, D-M9BW(V)-900

Motor mounting position: Top/Parallel

Motor mounting position: In-line
10 Cable type*

-	Without cable
S	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

* The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
* Standard cable entry direction is
- Top/Parallel: (A) Axis side
- In-line: (B) Counter axis side
(13) I/O Cable length [m]*
- \quad Without cable

$\overline{\mathbf{H}}$	Without cable (Connector only)
$\mathbf{1}$	1.5

* When "Without driver" is selected for driver type, only "一: Without cable" can be selected. Refer to the WEB LEY if I/O cable is required.
11 Cable length*[m]

-	Without cable
2	2
5	5
A	10

* The length of the encoder, motor and lock cables are the same.
12 Driver type*

	Compatible drivers	Power supply voltage [V]
-	Without driver	-
A1	LECSA1-S \square	100 to 120
A2	LECSA2-S \square	200 to 230
B1	LECSB1-S \square	100 to 120
B2	LECSB2-S \square	200 to 230
C1	LECSC1-S \square	100 to 120
C2	LECSC2-S \square	200 to 230
S1	LECSS1-S \square	100 to 120
S2	LECSS2-S \square	200 to 230

* When the driver type is selected, the cable is included. Select cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
- : Without cable and driver
* Specifications and dimensions for the 25A-series are the same as standard products.

Compatible Drivers

Driver type	Pulse input type/ Positioning type	Pulse input type	CC-Link direct input type	SSCNETIII type
Series	LECSA	LECSB	LECSC	LECSS
Number of point tables	Up to 7	-	Up to 255 (2 stations occupied)	-
Pulse input	\bigcirc	\bigcirc	-	-
Applicable network	-	-	CC-Link	SSCNET III
Control encoder	Incremental 17-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder
Communication function	USB communication	USB communication, RS422 communication	USB communication, RS422 communication	USB communication
Power supply voltage [V]	100 to 120 VAC $(50 / 60 \mathrm{~Hz})$ 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)			

[^19]
Moment Load Graph

Selection conditions

Mounting position	Vertical	Horizontal	
Max. speed [mm/s]	"Speed-Vertical Work Load Graph"	200 or less	Over 200
Graph (Sliding bearing type)	(1), (2)	(5), (6)*	(7), 8
Graph (Ball bushing bearing type)	(3), (4)	(9), 10	(11), (12)

* For the sliding bearing type, the speed is restricted with a horizontal/moment load.

Vertical Mounting, Sliding Bearing

* The limit of vertical load mass varies depending on "lead" and "speed". Check "Speed-Vertical Work Load Graph" on page 159.

Vertical Mounting, Ball Bushing Bearing

Moment Load Graph

Horizontal Mounting, Sliding Bearing

(7) $L=50$ mm Max. speed $=$ Over 200 mm/s

(6) $L=\mathbf{1 0 0 ~ m m}$ Max. speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(8) $L=100$ mm Max. speed $=$ Over 200 mm/s

Horizontal Mounting, Ball Bushing Bearing
(9) $L=50 \mathbf{~ m m}$ Max. speed $=\mathbf{2 0 0} \mathbf{~ m m / s}$ or less

(11) $L=50 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

(10) $L=100 \mathrm{~mm}$ Max. speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(12) $L=100 \mathrm{~mm}$ Max. speed = Over $200 \mathrm{~mm} / \mathrm{s}$

Operating Range when Used as Stopper

LEYG $\square \mathrm{M}$ (Sliding bearing)

\triangle Caution

Handling Precautions

Note 1) When used as a stopper, select a model with 30 stroke or less.
Note 2) LEYG \square L (ball bushing bearing) cannot be used as a stopper.
Note 3) Workpiece collision in series with guide rod cannot be permitted (Fig. a).
Note 4) The body should not be mounted on the end. It must be mounted on the top or bottom (Fig. b).

Series LEYG

AC Servo Motor

Speed-Vertical Work Load Graph/Required Conditions for "Regeneration Option"

LEYG25 \square (Motor mounting position: Top mounting/ln-line)

LEYG32 \square (Motor mounting position: Top mounting)

Required conditions for "Regeneration option"

* Regeneration option is required when using product above regeneration line in graph. (Order separately.)
"Regeneration Option" Models

Size	Model
LEYG25 \square	LEC-MR-RB-032
LEYG32 \square	LEC-MR-RB-032

LEYG32D (Motor mounting position: In-line)

Speed-Horizontal Work Load Graph/Required Conditions for "Regeneration Option"

LEYG25 \square (Motor mounting position: Top mounting/ln-line)

LEYG32 \square (Motor mounting position: Top mounting)

Required conditions for "Regeneration option"

* Regeneration option is required when using product above regeneration line in graph. (Order separately.)
"Regeneration Option" Models

Size	Model
LEYG25 \square	LEC-MR-RB-032
LEYG32 \square	LEC-MR-RB-032

LEYG32D (Motor mounting position: In-line)

Force Conversion Graph

LEYG25 \square (Motor mounting position: Top mounting/ln-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
25 or less	100	-
30	60	1.5

LEYG32 \square (Motor mounting position: Top mounting)

LEYG32D (Motor mounting position: In-line)

Electric Actuator/ Guide Rod Type Series LEYG LEYG25,32

RoHS

How to Order

1 Accuracy		$\begin{gathered} 2 \text { Size } \\ \hline 25 \\ \hline \end{gathered}$	3 Bearing type		4 Motor mounting position	
-	Basic type		M	Sliding bearing	-	Top mounting
H	High precision type	32	L	Ball bushing bearing	D	In-line

5 Motor type*

Symbol	Type	Output [W]	Actuator size	Compatible drive**3	UL-compliant
S2	AC servo motor (Incremental encoder)	100	25	LECSA \square-S1	-
S3	AC servo motor (Incremental encoder)	200	32	LECSA \square-S3	-
S6	AC servo motor (Absolute encoder)	100	25	LECSB \square-S5 LECSCD-S5 LECSS $\square-S 5 ~$	-
S7	AC servo motor (Absolute encoder)	200	32	LECSB \square-S7 LECSCD-S7 LECSS $\square-S 7 ~$	-
T6*2	AC servo motor (Absolute encoder)	100	200	32	LECSS2-T5

*1 For motor type S2 and S6, the compatible driver part number suffixes are S 1 and S 5 respectively.
*2 For motor type T6, the compatible driver part number suffix is T5.
*3 For details about the driver, refer to page 173.
6 Lead [mm]

Symbol	LEYG25	LEYG32*
A	12	$16(20)$
B	6	$8(10)$
C	3	$4(5)$

* The values shown in () are the lead for size 32 top mounting types. (Equivalent lead which includes the pulley ratio [1.25:1])

(7) Stroke [mm]

30	30
to	to
300	300

* Refer to the applicable stroke table.
* There is a limit for mounting size 32 top mounting type and 50 mm stroke or less. Refer to the dimensions.

8 Motor option

-	Without option
B	With lock

Guide option

-	Without option
F	With grease retaining function

* Only available for size 25 and 32 sliding bearings. (Refer to "Construction" on page 165.)

10 Cable type*

\bar{S}	Without cable
\mathbf{R}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

* The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
Standard cable entry direction is
- Top mounting: (A) Axis side
- In-line: (B) Counter axis side
(Refer to page 185 for details.)

Cable length* [m]

-	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

* The length of the encoder, motor and lock cables are the same.

* Applicable stroke table
Stroke Model $\mathbf{[m m}]$
LEYG25
LE
LEYG32

Note) Please consult with SMC for non-standard strokes as they are produced as special orders.

Driver type*

	Compatible driver	Power supply voltage [V]	UL-compliant
-	Without driver	-	-
A1	LECSA1-S \square	100 to 120	-
A2	LECSA2-S \square	200 to 230	-
B1	LECSB1-S \square	100 to 120	-
B2	LECSB2-S \square	200 to 230	-
C1	LECSC1-S \square	100 to 120	-
C2	LECSC2-S \square	200 to 230	-
S1	LECSS1-S \square	100 to 120	-
S2	LECSS2-S \square	200 to 230	-
	LECSS2-T \square	200 to 240	-

* When the driver type is selected, the cable is included. Select cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
- : Without cable and driver
(13) IIO cable length [m]*

-	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

* When "Without driver" is selected for driver type, only "-: Without cable" can be selected. Refer to page 186 if I/O cable is required. (Options are shown on page 186.)

Use of auto switches for the guide rod type LEYG series

Insert the auto switch from the front side with rod (plate) sticking out.
For the parts hidden behind the guide attachment (Rod stick out side), the auto switch cannot be fixed.
Please consult with SMC when using auto switch on the rod stick out side, as it is produced as a special order.

Compatible Driver

Driver type	Pulse input type /Positioning type	Pulse input type	CC-Link direct input type	SSCNET III type	Tsscnetwin Type
Series	LECSA	LECSB	LECSC	LECSS	LECSS-T
Number of point tables	Up to 7	-	Up to 255 (2 stations occupied)	-	-
Pulse input	\bigcirc	\bigcirc	-	-	-
Applicable network	-	-	CC-Link	SSCNET III	SSCNET III/H
Control encoder	Incremental 17-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 22-bit encoder
Communication function	USB communication	USB communicatio	RS422 communication	USB communication	USB communication
Power supply voltage [V]		$\begin{aligned} & 100 \text { to } 12 \\ & 200 \text { to } 23 \end{aligned}$	$\begin{aligned} & \text { AC }(50 / 60 \mathrm{~Hz}) \\ & \text { AC }(50 / 60 \mathrm{~Hz}) \end{aligned}$		200 to 240 VAC ($50 / 60 \mathrm{~Hz}$)
Reference page		P	173		Page 189

Series LEYG

AC Servo Motor

Specifications

Model			LEYG25 $\square \mathbf{S}_{6}^{2}$ (Top mounting) LEYG25 \square DS $_{6}^{2}$ (In-line)			LEYG32 $\square \mathrm{S}_{7}^{3}$ (Top mounting)			LEYG32 \square DS ${ }_{7}^{3}$ (In-line)		
	Stroke [mm] ${ }^{\text {Note 1) }}$		30, 50, 100, 150, 200, 250, 300			30, 50, 100, 200, 250, 300			30, 50, 100, 200, 250, 300		
	Work load [kg]	Horizontal ${ }^{\text {Note 2) }}$	18	50	50	30	60	60	30	60	60
		Vertical	7	15	29	7	17	35	10	22	44
	Force [N] ${ }^{\text {Note } 3)}$ (Set value: 15 to 30%)		65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max. speed [mm/s]		900	450	225	1200	600	300	1000	500	250
	Pushing speed [mm/s²] Note 4)		35 or less			30 or less			30 or less		
	Max. acceleration/deceleration [mm/s ${ }^{2}$]		5000			5000					
	Positioning repeatability [mm]	Basic type	± 0.02								
		High precision type	± 0.01								
	Lost motion Note 5) [mm]	Basic type	0.1 or less								
		High precision type	0.05 or less								
	Lead [mm] (including pulley ratio)		12	6	3	20	10	5	16	8	4
	Impact/Vibration resistance [m/s ${ }^{2}$] Note 6)		50/20			50/20					
	Actuation type		Ball screw + Belt [1:1]/Ball screw			Ball screw + Belt [1:1.25]			Ball screw		
	Guide type		Sliding bearing (LEYG $\square \mathrm{M}$), Ball bushing bearing (LEYG $\square \mathrm{L}$)								
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40			5 to 40					
	Operating humidity range [\%RH]		90 or less (No condensation)			90 or less (No condensation)					
	Regeneration option Note 7)		May be required depending on speed and work load (refer to page 159)								
	Motor output/Size		$100 \mathrm{~W} / \square 40$			$200 \mathrm{~W} / \square 60$					
	Motor type		AC servo motor (100/200 VAC)			AC servo motor (100/200 VAC)					
	Encoder		Motor type S2, S3: Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$) Motor type S6, S7: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)								
	Power consumption [W] Note 8)	Horizontal	45			65			65		
		Vertical	145			175			175		
	Standby power consumption	Horizontal	2			2			2		
	when operating [W] ${ }^{\text {Note } 9)}$	Vertical	8			8			8		
	Max. instantaneous power consumption [W] Note 10)		445			724			724		
\bigcirc	Type Note 11)		Non-magnetizing lock			Non-magnetizing lock					
5	Holding force [N]		131	255	485	157	308	588	197	385	736
它家	Power consumption at $20^{\circ} \mathrm{C}[\mathrm{W}]^{\text {Note 12) }}$		6.3			7.9			7.9		
	Rated Voltage [V]		24 VDC								

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) The maximum value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Please confirm using actual device.
Note 3) The force setting range (set values for the driver) for the force control with the torque control mode. Set it with reference to "Force Conversion Graph" on page 158. When the control equivalent to the pushing operation of the controller LECP series is performed, select the LECSS driver and combine it with the Simple Motion (manufactured by Mitsubishi Electric Corporation) which has a pushing operation function.
Note 4) The allowable collision speed for collision with the workpiece with the torque control mode.
Note 5) A reference value for correcting an error in reciprocal operation.
Note 6) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 7) The work load conditions which require "Regeneration option" when operating at the maximum speed (Duty ratio: 100%). Order the regeneration option separately. For details and order numbers, refer to "Required Conditions for Regeneration Option" on page 157.
Note 8) The power consumption (including the driver) is for when the actuator is operating.
Note 9) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during operation.
Note 10) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 11) Only when motor option "With lock" is selected.
Note 12) For an actuator with lock, add the power consumption for the lock.

Weight

Weight：Top Mounting Type

	Series	LEYG25M							LEYG32M						
	Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
흥	Incremental encoder	1.80	1.99	2.31	2.73	3.07	3.41	3.67	3.24	3.50	4.05	4.80	5.35	5.83	6.28
을	Absolute encoder	1.86	2.05	2.37	2.79	3.13	3.47	3.73	3.18	3.44	3.99	4.74	5.29	5.77	6.22
	Series	LEYG25L							LEYG32L						
	Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
흥	Incremental encoder	1.81	2.02	2.26	2.69	2.95	3.27	3.51	3.24	3.51	3.9	4.64	5.06	5.56	5.96
을	Absolute encoder	1.87	2.08	2.32	2.75	3.01	3.33	3.57	3.18	3.45	3.84	4.58	5.00	5.50	5.90

Weight：In－line Motor Type

SeriesStroke［mm］		LEYG25MD							LEYG32MD						
		30	50	100	150	200	250	300	30	50	100	150	200	250	300
	Incremental encoder	1.83	2.02	2.34	2.76	3.10	3.44	3.70	3.26	3.52	4.07	4.82	5.37	5.85	6.30
	Absolute encoder	1.89	2.08	2.40	2.82	3.16	3.50	3.76	3.20	3.46	4.01	4.76	5.31	5.79	6.24
Series		LEYG25LD							LEYG32LD						
	Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
$\begin{aligned} & \text { 흥 o } \\ & \sum_{2} \stackrel{0}{2} \end{aligned}$	Incremental encoder	1.84	2.05	2.29	2.72	2.98	3.30	3.54	3.26	3.53	3.92	4.66	5.08	5.58	5.98
	Absolute encoder	1.90	2.11	2.35	2.78	3.04	3.36	3.60	3.20	3.47	3.86	4.60	5.02	5.52	5.92

Additional Weight
［kg］

Size			$\mathbf{2 5}$
$\mathbf{3 2}$			
Lock	Incremental encoder	0.20	0.40
	Absolute encoder	0.30	0.66

Series LEYG
 AC Servo Motor

Construction
Motor mounting position: Top mounting type

LEYG $\square \mathrm{M}$

LEYG25/32: 50st or less

LEYG25/32: Over 50st

When grease retaining function selected
LEYG25/32: 50st or less

LEYG25/32: Over 50st

LEYG \square L

LEYG25/32L: 100st or less

LEYG25/32: Over 100st

(41)

Component Parts

No.	Description	Material	Note
1	Body	Aluminium alloy	Anodised
2	Ball screw shaft	Alloy steel	
3	Ball screw nut	-	
4	Piston	Aluminium alloy	
5	Piston rod	Stainless steel	Hard chrome Anodised
6	Rod cover	Aluminium alloy	
7	Housing	Aluminium alloy	
8	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plated
10	Connected shaft	Free cutting carbon steel	Nickel plated
11	Bushing	Lead bronze cast	
12	Bumper	Urethane	
13	Bearing	-	
14	Return box	Aluminium die-cast	Coating
15	Return plate	Aluminium die-cast	Coating
16	Magnet	-	
17	Wear ring holder	Stainless steel	Stroke 101 mm or more
18	Wear ring	POM	Stroke 101 mm or more
19	Screw shaft pulley	Aluminium alloy	
20	Motor pulley	Aluminium alloy	
21	Belt	-	
22	Bearing stopper	Aluminium alloy	
23	Parallel pin	Stainless steel	
24	Seal	NBR	
25	Retaining ring	Steel for spring	Phosphate coated
26	Motor adapter	Aluminium alloy	Coating
27	Motor	-	

No.	Description	Material	Note
28	Motor block	Aluminium alloy	Coating
29	Hub	Aluminium alloy	
30	Spider	Urethane	Spider
$\mathbf{3 1}$	Guide attachment	Aluminium alloy	Anodised
32	Guide rod	Carbon steel	
33	Plate	Aluminium alloy	Anodised
34	Plate mounting bolt	Carbon steel	Nickel plated
35	Guide bolt	Carbon steel	Nickel plated
36	Sliding bearing	-	
37	Felt	Felt	
38	Holder	Resin	
39	Retaining ring	Steel for spring	Phosphate coated
40	Ball bushing	-	
41	Spacer	Aluminium alloy	Chromated

Support Block	
Size	Order no.
$\mathbf{2 5}$	LEYG-SO25
$\mathbf{3 2}$	LEYG-SO32

Replacement Parts /Belt

* Two body mounting bolts are included with the support block.

Replacement Parts/Grease Pack

Applied portion	Order no.			
* Apply grease on the piston rod				
Piston rod	GR-S-010 $(10 \mathrm{~g})$			
Guide rod	GR-S-020 $(20 \mathrm{~g})$		\quad	Grease should be applied at 1
:---				
million cycles or 200 km,				
whichever comes first.				

Dimensions: Top Mounting

Section Y details

Note 1) Range within which the rod can move. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod. Note 2) The Z phase first detecting position from the stroke end of the motor side. Note 3) Through holes cannot be used for size 32 with 50 mm stroke or less.

Section XX

LEYG $\square \mathbf{M}$ (Sliding bearing) [mm]

Size	Stroke range $[\mathrm{mm}]$	L	DB
$\mathbf{2 5}$	Up to 59	67.5	
	60 to 185	100.5	12
	186 to 300	138	
$\mathbf{3 2}$	Up to 59	74	
	60 to 185	107	16
	186 to 300	144	

LEYG \square M, LEYG \square L Common

Series LEYG

AC Servo Motor

Dimensions: In-line Motor

Section Y details

Encoder Z phase detecting position Note 2)
\varnothing XA H9 depth XA $\quad 4 \times \mathbf{O A}$ thread depth $\mathbf{O B}$

Note 1) Range within which the rod can move. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod. Note 2) The Z phase first detecting position from the stroke end of the motor side.

Rod operating range Note 1) (Stroke +4 mm)

LEYG $\square \mathbf{M}$ (Sliding bearing) $\quad[\mathrm{mm}]$

Size	Stroke range $[\mathrm{mm}]$	L	DB
$\mathbf{2 5}$	Up to 59	67.5	
	60 to 185	100.5	12
	186 to 300	138	
$\mathbf{3 2}$	Up to 59	74	
	60 to 185	107	16
	186 to 300	144	

LEYG $\square \mathrm{M}$, LEYG $\square \mathrm{L}$ Common

Electric Actuator/Guide Rod Type Series LEYG
 AC Servo Motor

Support Block

-Guide for support block application

When the stroke exceeds 100 mm and the mounting orientation is horizontal, the body will be bent. Mounting the support block is recommended. (Please order it separately from the models shown below.)

Support Block Model

LEYG-S025
Size

025	For size 25
$\mathbf{0 3 2}$	For size 32

Caution

Do not install the body using only a support block.
The support block should be used only for support.

Size	Model	Stroke range	EB	G	GA	OA	OB	ST	WC	X
25	LEYG-S025	100st or less	85	5.4	40.3	M6 x 1.0	12	20	70	54
		101st or more, 300st or less							95	
32	LEYG-S032	100st or less	101	5.4	50.3	M6 x 1.0	12	22	75	64
		101st or more, 300st or less							105	

* Two body mounting bolts are included with the support block.
* The through holes of the LEYG-S032 cannot be used. Use taps on the bottom.

Series LEY/LEYG Electric Actuators/ Specific Product Precautions 1

Be sure to read this before handling. Refer to the back cover for Safety Instructions. For Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smc.eu

Design/Selection

© Warning

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable lateral load on the rod end. If the product is used outside of the specification limits, the eccentric load applied to the piston rod will be excessive and have adverse effects such as creating play on the sliding parts of the piston rod, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.

This can cause failure.
3. When used as a stopper, select the LEYG series "Sliding bearing" for a stroke of 30 mm or less.
4. When used as a stopper, fix the main body with a guide attachment ("Top mounting" or "Bottom mounting").
If the end of the actuator is used to fix the main body (end mounting), the excessive load acts on the actuator, which adversely affects the operation and life of the product.

Handling

\triangle Caution

1. Use the product within the specified pushing speed range for the pushing operation.
It may lead to damage and malfunction.
2. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.

Additional force will cause the displacement of the origin position since it is based on detected motor torque.
3. Do not scratch or dent the sliding parts of the piston rod, by striking or attaching objects.

The piston rod and guide rod are manufactured to precise tolerances, even a slight deformation may cause malfunction.
4. When an external guide is used, connect it in such a way that no impact or load is applied to it.
Use a freely moving connector (such as a floating joint).
5. Do not operate by fixing the piston rod and moving the actuator body.
Excessive load will be applied to the piston rod, leading to damage to the actuator and reduced the life of the product.

Handling

© Caution

6. When an actuator is operated with one end fixed and the other free (ends tapped or flange type), a bending moment may act on the actuator due to vibration generated at the stroke end, which can damage the actuator. In such a case, install a mounting bracket to suppress the vibration of the actuator body or reduce the speed so that the actuator does not vibrate at the stroke end.

Also, use a mounting bracket when moving the actuator body or when a long stroke actuator is mounted horizontally and fixed at one end.
7. Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.

This may cause deformation of the non-rotating guide, abnormal responses of the auto switch, play in the internal guide or an increase in the sliding resistance. Refer to the table below for the approximate values of the allowable range of rotational torque.

Allowable rotational torque $[\mathrm{N} \cdot \mathrm{m}$] or less	LEY25 $\square \square$	LEY32 $\square \square$	LEY63
	1.1	1.4	2.8

When screwing in a bracket or nut to the end of the piston rod, hold the flats of the rod end with a wrench (the piston rod should be fully retracted). Do not apply tightening torque to the non-rotating mechanism.

8. When rotational torque is applied to the end of the plate, use it within the allowable range. [Series LEYG]
This may cause deformation of the guide rod and bushing, play in the guide or an increase in the sliding resistance.

Series LEY／LEYG Electric Actuators／ Specific Product Precautions 2

\triangle
Be sure to read this before handling．Refer to the back cover for Safety Instructions． For Electric Actuator Precautions，refer to＂Handling Precautions for SMC Products＂ and the Operation Manual on SMC website，http：／／www．smc．eu

Handling

\triangle Caution

9．When mounting the product，keep a 40 mm or longer diameter for bends in the cable．

10．When mounting a bolt，workpiece or jig，hold the flats of the piston rod end with a wrench so that the piston rod does not rotate．The bolt should be tightened within the specified torque range．

This may cause abnormal responses of the auto switch，play in the internal guide or an increase in the sliding resistance．

11．When mounting the product and／or a workpiece， tighten the mounting screws within the specified torque range．

Tightening the screws with a higher torque than recommended may cause a malfunction，whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position．
＜Series LEY＞
Workpiece fixed／Rod end female thread

Model	Screw size	Max．tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max．screw－in depth $[\mathrm{mm}]$	End socket widh across flats $[\mathrm{mm}]$
LEY25	M8 $\times 1.25$	12.5	13	17
LEY32	M 8×1.25	12.5	13	22
LEY63	M16 2	106	21	36

Workpiece fixed／Rod end male thread
（When＂Rod end male thread＂is selected．）

Model	Thread size	Max．tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Etfective thread length $[\mathrm{mm}]$	End socketwidh across flats $[\mathrm{mm}]$
LEY25	M14 1.5	65.0	20.5	17
LEY32	M14 $\times 1.5$	65.0	20.5	22
LEY63	M18 $\times 1.5$	97.0	26	36

End bracket
screw－in depth

Model	Rod end nut		$\begin{array}{\|c\|} \hline \text { End bracket } \\ \text { screwnindepth [mm] } \\ \hline \end{array}$
	Widharassalas［mm］	Length［mm］	
LEY25	22	8	8 or more
LEY32	22	8	8 or more
LEY63	27	11	18

＊Rod end nut is an accessary．

\triangle Caution

Body fixed／Body bottom tapped style
（When＂Body bottom tapped＂is selected．）

Model	Screw size	Max．tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max．screw－in depth $[\mathrm{mm}]$
LEY25	$\mathrm{M} 5 \times 0.8$	3.0	6.5
LEY32	$\mathrm{M} 6 \times 1.0$	5.2	8.8
LEY63	$\mathrm{M} 8 \times 1.25$	12.5	10

Body fixed／Rod side／Head side tapped style

＜Series LEYG＞
Workpiece fixed／Plate tapped style

Body fixed／Top mounting

Model	Screw size	Max．tightening torque［N．m］	Length： L $[\mathrm{mm}]$
LEYG25			
L	$\mathrm{M} 5 \times 0.8$	3.0	40.3
LEYG32	L	$\mathrm{M} 5 \times 0.8$	3.0
50.3			

Body fixed／Bottom mounting

Body fixed／Head side tapped style

AC Servo Motor

Series LEY/LEYG Electric Actuators/ Specific Product Precautions 3

Be sure to read this before handling. Refer to the back cover for Safety Instructions. For Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smc.eu

Handling

\triangle Caution

12. Keep the flatness of the mounting surface within the following ranges when mounting the actuator body and workpiece.
Unevenness of a workpiece or base mounted on the body of the product may cause an increase in the sliding resistance.

| Model | Mounting position | Flatness |
| :--- | :--- | :--- | :--- | :--- |
| LEY \square | Body/Body bottom | 0.02 mm |
| or less | | |

13. When using auto switch with the guide rod type LEYG series, the following limits will be in effect. Please select the product while paying attention to this.

- Insert the auto switch from the front side with rod (plate) sticking out.
- The auto switches with perpendicular electrical entry cannot be used.
- For the parts hidden behind the guide attachment (Rod stick out side), the auto switch cannot be fixed
- Please consult with SMC when using auto switch on the rod stick out side.

Enclosure

- First Characteristics:

Degrees of protection against solid foreign objects

$\mathbf{0}$	Non-protected
$\mathbf{1}$	Protected against solid foreign objects of 50 mm and greater
$\mathbf{2}$	Protected against solid foreign objects of 12 mm and greater
$\mathbf{3}$	Protected against solid foreign objects of 2.5 mm and greater
$\mathbf{4}$	Protected against solid foreign objects of 1.0 mm and greater
$\mathbf{5}$	Dust-protected
$\mathbf{6}$	Dust-tight

- Second Characteristics:

Degrees of protection against water

$\mathbf{0}$	Non-protected	-
$\mathbf{1}$	Protected against vertically falling water drops	Dripproof type 1
$\mathbf{2}$	Protected against vertically falling water drops when enclosure tilted up to 15	Dripproof type 2
$\mathbf{3}$	Protected against rainfall when enclosure tilted up to 60°	Rainproof type
$\mathbf{4}$	Protected against splashing water	Splashproof type
$\mathbf{5}$	Protected against water jets	Water-jet- proof type
$\mathbf{6}$	Protected against powerful water jets	Powerful water- jet-proof type
$\mathbf{7}$	Protected against the effects of temporary immersion in water	Immersible type
$\mathbf{8}$	Protected against the effects of continuous immersion in water	Submersible type

Example) IP65: Dust-tight, Water-jet-proof type
"Water-jet-proof type" means that no water intrudes inside an equipment that could hinder from operating normally by means of applying water for 3 minutes in the prescribed manner. Take appropriate protection measures, since a device is not usable in an environment where a droplet of water is splashed constantly.

Series LEY／LEYG Electric Actuators／
Specific Product Precautions 4
Be sure to read this before handling．Refer to the back cover for Safety Instructions． For Electric Actuator Precautions，refer to＂Handling Precautions for SMC Products＂ and the Operation Manual on SMC website，http：／／www．smc．eu

Maintenance

© Warning

1．Ensure that the power supply is stopped and the workpiece is removed before starting maintenance work or replacement of the product．
－Maintenance frequency
Perform maintenance according to the table below．

Frequency	Appearance check	Belt check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months $/ 2$ $250 \mathrm{~km} / 5$ million cycles＊	\bigcirc	\bigcirc

＊Select whichever comes first．
－Items for visual appearance check
1．Loose set screws，Abnormal dirt
2．Check of flaw and cable joint
3．Vibration，Noise
－Items for belt check
Stop operation immediately and replace the belt when belt appear to be below．Further，ensure your operating environment and conditions satisfy the requirements specified for the product．
a．Tooth shape canvas is worn out
Canvas fiber becomes fuzzy．Rubber is removed and the fiber becomes whitish．Lines of fibers become unclear．
b．Peeling off or wearing of the side of the belt Belt corner becomes round and frayed thread sticks out．
c．Belt partially cut
Belt is partially cut．Foreign matter caught in teeth other than cut part causes flaw．
d．Vertical line of belt teeth
Flaw which is made when the belt runs on the flange．
e．Rubber back of the belt is softened and sticky
f．Crack on the back of the belt

AC Servo Motor Driver Series LECS \square

CC-Link Direct Input Type

Absolute Type Series LECSC

Pulse Input Type

SSCNET III Type

Absolute Type Series LECSS

SSCNETIIH Type

Absolute Type
Series LECSS-T

AC Servo Motor Driver
 Series LECS \square

Power supply voliage	100 to 120 VAC 200 to 230 VAC	
Motor capacity	100/200/400 W	

Series LECSA (Pulse input type/Positioning type)

Incremental Type

- Up to 7 positioning points by point table
- Input type: Pulse input
- Control encoder: Incremental 17-bit encoder (Resolution: 131072 pulse/rev)
- Parallel input: 6 inputs output: 4 outputs

- Input type: Pulse input
- Control encoder: Absolute 18-bit encoder (Resolution: 262144 pulse/rev)
- Parallel input: 10 inputs
output: 6 outputs
- Position data/speed data setting and operation start/stop
- Positioning by up to 255 point tables (when 2 stations occupied)
- Up to 32 drivers connectable (when 2 stations occupied) with CC-Link communication
- Applicable Fieldbus protocol: CC-Link (Ver. 1.10, max. communication speed: 10 Mbps)
- Control encoder: Absolute 18-bit encoder (Resolution: 262144 pulse/rev)

Series LECSS (SSCNET III type)

- Compatible with Mitsubishi Electric's servo system controller network
- Reduced wiring and SSCNET III optical cable for one-touch connection
- SSCNET III optical cable provides enhanced noise resistance
- Up to 16 drivers connectable with SSCNET III communication
- Applicable Fieldbus protocol: SSCNET III
(High-speed optical communication, max. one-way communication speed: 100 Mbps)
- Control encoder: Absolute 18-bit encoder (Resolution: 262144 pulse/rev)

AC Servo Motor Driver

Incremental Type Series LECSA

Absolute Type
Series LECSB/LECSC/LECSS
(Pulse Input Type) (CC-Link Direct Input Type) (SSCNET III Type)

* Only available for power supply voltage "200 to 230 VAC".

Dimensions

LECSA \square

For LECSA \square-S1,S3

For LECSA \square-S4

LECSB \square

*Battery included.

AC Servo Motor Driver Series LECS
 \qquad

Dimensions

LECSC \square

* Battery included.

Connector name	Description
CN1	CC-Link connector
CN2	Encoder connector
CN3	RS-422 communication connector
CN4	Battery connector
CN5	USB communication connector
CN6	I/O signal connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector
CNP3	Servo motor power connector

Connector name	Description
CN1A	Front axis connector for SSCNET III optical cable
CN1B	Rear axis connector for SSCNET II optical cable
CN2	Encoder connector
CN3	I/O signal connector
CN4	Battery connector
CN5	USB communication connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector
CNP3	Servo motor power connector

* Battery included.

Series LECS \square

Specifications

Series LECSA

Model		LECSA1-S1	LECSA1-S3	LECSA2-S1	LECSA2-S3	LECSA2-S4
Compatible motor capacity [W]		100	200	100	200	400
Compatible encoder		Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$)				
Main power supply	Power voltage [V]	Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)		Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
	Rated current [A]	3.0	5.0	1.5	2.4	4.5
Control power supply	Control power supply voltage [V]	24 VDC				
	Allowable voltage fluctuation [V]	21.6 to 26.4 VDC				
	Rated current [A]	0.5				
Parallel input		6 inputs				
Parallel output		4 outputs				
Max. input pulse frequency [pps]		1 M (for differential receiver), 200 k (for open collector)*2				
Function	In-position range setting [pulse]	0 to ± 65535 (Command pulse unit)				
	Error excessive	± 3 rotations				
	Torque limit	Parameter setting				
	Communication	USB communication				
Operating temperature range [${ }^{\circ} \mathrm{C}$]		0 to 55 (No freezing)				
Operating humidity range [\%RH]		90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]		-20 to 65 (No freezing)				
Storage humidity range [\%RH]		90 or less (No condensation)				
Insulation resistance [M C]		Between the housing and SG: 10 (500 VDC)				
Weight [g]		600				700

Series LECSB

Model		LECSB1-S5	LECSB1-S7	LECSB2-S5	LECSB2-S7	LECSB2-S8
Compatible motor capacity [W]		100	200	100	200	400
Compatible encoder		Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)				
Main power supply	Power voltage [V]	Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)		Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$) Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Three phase 170 to 253 VAC Single phase 170 to 253 VAC		
	Rated current [A]	3.0	5.0	0.9	1.5	2.6
Control power supply	Control power supply voltage [V]	Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)		Single phase 200 to 230 VAC (50 / 60 Hz)		
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
	Rated current [A]	0.4		0.2		
Parallel input		10 inputs				
Parallel output		6 outputs				
Max. input pulse frequency [pps]		1 M (for differential receiver), 200 k (for open collector)				
Function	In-position range setting [pulse]	0 to ± 10000 (Command pulse unit)				
	Error excessive	± 3 rotations				
	Torque limit	Parameter setting or external analogue input setting (0 to 10 VDC)				
	Communication	USB communication, RS422 communication*1				
Operating temperature range [${ }^{\circ} \mathrm{C}$]		0 to 55 (No freezing)				
Operating humidity range [\%RH]		90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]		-20 to 65 (No freezing)				
Storage humidity range [\%RH]		90 or less (No condensation)				
Insulation resistance [M ${ }^{\text {] }}$]		Between the housing and SG: 10 (500 VDC)				
Weight [g]		800				1000

*1 USB communication and RS422 communication cannot be performed at the same time.
*2 If the command pulse train input is open collector method, it supports only to the sink (NPN) type interface. It does not correspond to the source (PNP) type interface.

ac Servo Motor Driver Series LECS \square

Specifications

Series LECSC

Model			LECSC1-S5	LECSC1-S7	LECSC2-S5	LECSC2-S7	LECSC2-S8
Compatible motor capacity [W]			100	200	100	200	400
Compatible encoder			Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)				
Main power supply	Power voltage [V]		$\begin{gathered} \text { Single phase } 100 \text { to } 120 \mathrm{VAC} \\ (50 / 60 \mathrm{~Hz}) \\ \hline \end{gathered}$		Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$) Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]		Single phase 85 to 132 VAC		Three phase 170 to 253 VAC Single phase 170 to 253 VAC		
	Rated current [A]		3.0	5.0	0.9	1.5	2.6
Control	Control power supply voltage [V]		Single phase 100 to 120 VAC$(50 / 60 \mathrm{~Hz})$		$\begin{gathered} \text { Single phase } 200 \text { to } 230 \text { VAC } \\ (50 / 60 \mathrm{~Hz}) \\ \hline \end{gathered}$		
	Allowable voltage fluctuation [V]		Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
	Rated c	[A]	0.4		0.2		
Communication specifications	Applicable Fieldbus protocol (Version)		CC-Link communication (Ver. 1.10)				
	Connection cable		CC-Link Ver. 1.10 compliant cable (Shielded 3-core twisted pair cable)**				
	Remote station number		1 to 64				
	Cable length	Communication speed [bps]	16 k	625 k	2.5 M	5 M	10 M
		Maximum overall cable length [m]	1200	900	400	160	100
		Cable length between stations [m$]$	0.2 or more				
	I/O occupation area (Inputs/Outputs)		1 station occupied (Remote I/O 32 points/32 points)/(Remote register 4 words/4 words) 2 stations occupied (Remote I/O 64 points/ 64 points)/(Remote register 8 words/8 words)				
	Number of connectable drivers		Up to 42 (when 1 station is occupied by 1 driver), Up to 32 (when 2 stations are occupied by 1 driver), when there are only remote device stations.				
Command method	Remote register input		Available with CC-Link communication (2 stations occupied)				
	Point table No. input		Available with CC-Link communication, RS422 communication CC-Link communication (1 station occupied): 31 points CC-Link communication (2 stations occupied): 255 points RS422 communication: 255 points				
	Indexer positioning input		Available with CC-Link communication CC-Link communication (1 station occupied): 31 points CC-Link communication (2 stations occupied): 255 points				
Communication function			USB communication, RS-422 communication*2				
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 55 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]			-20 to 65 (No freezing)				
Storage humidity range [\%RH]			90 or less (No condensation)				
Insulation resistance [$\mathrm{M} \Omega$]			Between the housing and SG: 10 (500 VDC)				
Weight [g]			800				1000

*1 If the system comprises of both CC-Link Ver. 1.00 and Ver. 1.10 compliant cables, Ver. 1.00 specifications are applied to the overall cable length and the cable length between stations.
*2 USB communication and RS422 communication cannot be performed at the same time.

Series LECSS

Model		LECSS1-S5	LECSS1-S7	LECSS2-S5	LECSS2-S7	LECSS2-S8
Compatible motor capacity [W]		100	200	100	200	400
Compatible encoder		Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)				
Main power supply	Power voltage [V]	Single phase 100 to 120 VAC$(50 / 60 \mathrm{~Hz})$		Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$) Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Three phase 170 to 253 VAC Single phase 170 to 253 VAC		
	Rated current [A]	3.0	5.0	0.9	1.5	2.6
Control power supply	Control power supply voltage [V]	Single phase 100 to 120 VAC$(50 / 60 \mathrm{~Hz})$		$\begin{gathered} \text { Single phase } 200 \text { to } 230 \text { VAC } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$		
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
	Rated current [A]	0.4		0.2		
Applicable Fieldbus protocol		SSCNET III (High-speed optical communication)				
Communication function		USB communication				
Operating temperature range [${ }^{\circ} \mathrm{C}$]		0 to 55 (No freezing)				
Operating humidity range [\%RH]		90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]		-20 to 65 (No freezing)				
Storage humidity range [\%RH]		90 or less (No condensation)				
Insulation resistance [M Ω]		Between the housing and SG: 10 (500 VDC)				
Weight [g]		800				1000

LECSA $\square-\square$

Main Circuit Power Supply Connector: CNP1 * Accessory

Terminal name	Function	Details
\dagger	Protective earth (PE)	Should be grounded by connecting the servo motor's earth terminal and the control panel's protective earth (PE).
L1	Main circuit power supply	Connect the main circuit power supply. LECSA1: Single phase 100 to 120 VAC, 50 / 60 Hz LECSA2: Single phase 200 to 230 VAC, 50 / 60 Hz
L2		
P	Regeneration option	Terminal to connect regeneration option LECSA \square-S1: Not connected at time of shipping. LECSA \square-S3, S4: Connected at time of shipping. * If regeneration option is required for "Model Selection", connect to this terminal.
C		
U	Servo motor power (U)	Connect to motor cable (U, V, W).
V	Servo motor power (V)	
W	Servo motor power (W)	

Power Supply Wiring Example: LECSB, LECSC, LECSS

LECSB1- \square LECSC1- \square LECSS1

LECSB2- \square
LECSC2- \square
LECSS2- \square

For single phase 200 VAC

For three phase 200 VAC

Note) For single phase 200 to 230 VAC, power supply should be connected to L1 and L2 terminals, with nothing connected to L3.

Control Circuit Power Supply Connector: CNP2 * Accessory

Termnan name	Function	Details
P	Regeneration	Connect between P and D. (Connected at time of shipping.) * If regeneration option is required for "Model Selection", connect to this terminal.
C	option	

Motor Connector: CNP3 * Accessory

Terminal name	Function	
U	Servo motor power (U)	
V	Servo motor power (V)	Connect to motor cable (U, V, W)
W	Servo motor power (W)	

LECSB

Control Signal Wiring Example: LECSA

This wiring example shows connection with a PLC (FX3U- \square MT/ES) manufactured by Mitsubishi Electric as when used in position control mode. Refer to the LECSA operation manual and any technical literature or operation manuals for your PLC and positioning unit before connecting to another PLC or positioning unit.

Note 1) For preventing electric shock, be sure to connect the driver circuit power supply connector (CNP1)'s protective earth (PE) terminal (marked $\hat{\theta}$) to the control panel's protective earth (PE).
Note 2) For interface use, supply $24 \mathrm{VDC} \pm 10 \% 200 \mathrm{~mA}$ using an external source. 200 mA is the value when all I/O command signals are used and reducing the number of inputs/outputs can decrease current capacity. Refer to "Operation Manual" for required current for interface.
Note 3) The failure (ALM) is ON during normal conditions. When it is OFF (alarm occurs), stop the sequencer signal using the sequence program.
Note 4) The same name signals are connected inside the driver.
Note 5) For command pulse input with an open collector method. When a positioning unit loaded with a differential line driver method is used, it is 10 m or less. Note 6) If the command pulse train input is open collector method, it supports only to the sink (NPN) type interface. It does not correspond to the source (PNP) type interface.

ac Servo Motor Driver Series $L E C S$
 \square

Control Signal Wiring Example: LECSB

This wiring example shows connection with a positioning unit (QD75D) manufactured by Mitsubishi Electric as when used in position control mode. Refer to the LECSB operation manual and any technical literature or operation manuals for your PLC and positioning unit before connecting to another PLC or positioning unit.

Note 1) For preventing electric shock, be sure to connect the driver's protective earth (PE) terminal (marked \mathcal{F}) to the control panel's protective earth (PE).
Note 2) For interface use, supply 24 VDC $\pm 10 \% 300 \mathrm{~mA}$ using an external source.
Note 3) The failure (ALM) is ON during normal conditions. When it is OFF (alarm occurs), stop the sequencer signal using the sequence program.
Note 4) The same name signals are connected inside the driver.
Note 5) For command pulse input with a differential line driver method. For open collector method, it is 2 m or less.
Note 6) If the command pulse train input is open collector method, it supports only to the sink (NPN) type interface. It does not correspond to the source (PNP) type interface.

Series LECS \square

Control Signal Wiring Example: LECSC

Note 1) For preventing electric shock, be sure to connect the driver's protective earth (PE) terminal (marked Θ) to the control panel's protective earth (PE). Note 2) For interface use, supply 24 VDC $\pm 10 \% 150 \mathrm{~mA}$ using an external source.
Note 3) The failure (ALM) is ON during normal conditions. When it is OFF (alarm occurs), stop the sequencer signal using the sequence program.

Control Signal Wiring Example: LECSS

Series LECS \square

Options
Motor cable, Lock cable, Encoder cable (LECS \square common)

LE-CSB- $\square \square$: Lock cable

LE-CSE- $\square \square$: Encoder cable

Product no.	Ø D
LEC-CSM-S $\square \mathbf{A}$	6.2
LEC-CSM-S $\square \mathbf{B}$	
LEC-CSM-R $\square \mathbf{A}$	5.7
LEC-CSM-R $\square \mathbf{B}$	
LEC-CSB-S $\square \mathbf{A}$	4.7
LEC-CSB-S $\square \mathbf{B}$	
LEC-CSB-R $\square \mathbf{A}$	

I/O connector (Without cable, Connector only)

EE-CSN A	
Driver type ${ }^{\text {d }}$	
A	LECSAD, LECSC \square
B	LECSB \square
S	LECSS \square

LE-CSNA

LE-CSNB

LE-CSNS

* LE-CSNA: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item. LE-CSNB: 10150-3000PE (connector)/10350-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item. LE-CSNS: 10120-3000PE (connector)/10320-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
* Applicable conductor size: AWG24 to 30

Options

SSCNET III optical cable

* LE-CSS- \square is MR-J3BUS \square M
manufactured by Mitsubishi Electric Corporation.

I/O cable

Dimensions/Pin No.

Product no.	W	H	T	U	Pin no. n
LEC-CSNA-1	39	37.2	12.7	14	14
LEC-CSNB-1		52.4		18	26
LEC-CSNS-1		33.3		14	21

* LEC-CSNA-1: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
LEC-CSNB-1: 10150-3000PE (connector)/10350-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
LEC-CSNS-1: 10120-3000PE (connector)/10320-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
* Conductor size: AWG24

Wiring

LEC-CSNA-1: Pin no. 1 to 26
LEC-CSNB-1: Pin no. 1 to 50
LEC-CSNS-1: Pin no. 1 to 20

$\frac{0}{\frac{0}{6}}$	1	1	Orange	\square	Red
	2			-	Black
	3	2	Light grey	\square	Red
	4			\square	Black
	5	3	White	\square	Red
	6			\square	Black
	7	4	Yellow	\square	Red
	8			\square	Black
	9	5	Pink	\square	Red
	10			\square	Black
	11	6	Orange	$\square \square$	Red
	12			$\square \square$	Black
	13	7	Light grey	$\square \square$	Red
	14			$\square \square$	Black
	15	8	White	$\square \square$	Red
	16			- \square	Black
	17	9	Yellow	$\square \square$	Red
	18			-	Black

Connector pin no.		Pair no. of wire	Insulation colour	Dot mark	Dot colour
$\frac{0}{\frac{0}{0}}$	19	10	Pink	■	Red
	20			■■	Black
	21	11	Orange	■■■	Red
	22			■■■	Black
	23	12	Light Grey	■■■	Red
	24			$\square \square \square$	Black
	25	13	White	■■■	Red
	26			$\square \square \square$	Black
	27	14	Yellow	- \square	Red
	28			-mm	Black
	29	15	Pink	■■m	Red
	30			■■■	Black
	31	16	Orange	■■■■	Red
	32			■■■■	Black
	33	17	Light Grey	■■■■	Red
	34			■■■■	Black

$\begin{array}{\|c\|} \hline \text { Connector } \\ \text { pin no. } \\ \hline \end{array}$		Pair no. of wire	Insulation colour	Dot mark	Dot colour
$\begin{aligned} & \frac{0}{0} \\ & \hline \frac{0}{4} \\ & 4 \end{aligned}$	35	18	White	- $=\square$	Red
	36			-mme	Black
	37	19	Yellow	-mmm	Red
	38			-mme	Black
	39	20	Pink	- $\square=\square$	Red
	40			- $\square \square \square$	Black
	41	21	Orange	-m■m■	Red
	42			-	Black
	43	22	Light grey	-m■河	Red
	44			-■■■■	Black
	45	23	White	-■■■■	Red
	46			-mmme	Black
	47	24	Yellow	-■■■■	Red
	48			■■■■■	Black
	49	25	Pink	-■■■■	Red
	50			■■■■■	Black

Series LECS \square

Options

Regeneration option (LECS \square common)

LEC - MR - RB - 12

Regeneration option type

$\mathbf{0 3 2}$	Allowable regenerative power 30 W
$\mathbf{1 2}$	Allowable regenerative power 100 W

* Confirm regeneration option to be used in "Model Selection".

LEC-MR-RB-032

Weight

Model	Weight [kg]
LEC-MR-RB-032	0.5

* MR-RB032 manufactured by Mitsubishi

Electric Corporation.

LEC-MR-RB-12

Weight

Model	Weight [kg]
LEC-MR-RB-12	1.1
* MR-RB12 manufactured by Mitsubishi	

* MR-RB12 manufactured by Mitsubishi

Electric Corporation.

Options

Setup software (MR Configurator2™ ${ }^{(L E C S A, ~ L E C S B, ~ L E C S C, ~ L E C S S ~ c o m m o n) ~}$

- Display language

-	Japanese version
\mathbf{E}	English version
\mathbf{C}	Chinese version

* SW1DNC-MRC2- \square manufactured by Mitsubishi Electric Corporation. Refer to Mitsubishi Electric Corporation's website for operating environment and version upgrade information.
MR Configurator2 ${ }^{\text {TM }}$ is a registered trademark or trademark of Mitsubishi Electric Corporation.

Adjustment, waveform display, diagnostics, parameter read/write, and test operation can be performed upon a PC. Compatible PC
When using setup software (MR Configurator2 ${ }^{\text {TM }}$), use an IBM PC/AT compatible PC that meets the following operating conditions.

Hardware Requirements

Equipment		Setup software (MR Configurator2 ${ }^{\text {TM }}$) LEC-MRC2 \square
Note 1) 2) 3) 4) 5) 6) 7) 9) PC	OS	Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 8$ Enterprise Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 8 Pro Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 8$ Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Enterprise Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Ultimate Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 7 Professional Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 7 Home Premium Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR 7}$ Starter Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Enterprise Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Ultimate Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Business Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Home Premium Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Home Basic Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ XP Professional Operating System, Service Pack 2 or later Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ XP Home Edition Operating System, Service Pack 2 or later Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 2000$ Professional Operating System, Service Pack 4 or later
	Available HD space	1 GB or more
	Communication interface	Use USB port.
Display		Resolution 1024×768 or more Must be capable of high color (16-bit) display. The connectable with the above PC
Keyboard		The connectable with the above PC
Mouse		The connectable with the above PC
Printer		The connectable with the above PC
USB cable ${ }^{\text {Note } 8)}$		LEC-MR-J3USB

Setup Software Compatible Driver

Compatible driver	Setup software
	MR Configurator2 ${ }^{\text {TM }}$
LECSA	LEC-MRC2 \square
LECSB	\bigcirc
LECSC	\bigcirc
LECSS \square-S \square	\bigcirc
LECSS2-T \square	\bigcirc

Note 1) Before using a PC for setting LECSA point table method/program operation method, upgrade to version 1.18U (Japanese version)/version 1.19V (English version) or later. Refer to Mitsubishi Electric Corporation's website for version upgrade information.
Note 2) Windows ${ }^{\circledR}$ and Windows Vista ${ }^{\circledR}$ are registered trademarks of Microsoft Corporation in the United States and other countries.
Note 3) On some PCs, setup software (MR Configurator2 ${ }^{\text {TM }}$) may not run properly.
Note 4) When Windows ${ }^{\circledR}$ XP or later is used, the following functions cannot be used.

- Windows Program Compatibility mode

Fast User Switching
Remote Desktop

- Large Fonts Mode (Display property)

DPI settings other than 96 DPI (Display property) 64-bit OSs are not supported, except for Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR 7} 7$ or later.
Note 5) When Windows ${ }^{\circledR 7}$ is used, the following functions cannot be used.

- Windows XP Mode

Windows Touch
Note 6) When using this software with Windows Vista ${ }^{\circledR}$ or later, log in as a user having USER authority or higher.
Note 7) When Windows ${ }^{\circledR} 8$ is used, the following functions cannot be used. - Hyper-V

- Modern UI style

Note 8) Order USB cable separately.
Note 9) Using a PC for setting Windows ${ }^{\circledR} 8.1$, upgrade to version 1.25B or later. Refer to Mitsubishi Electric Corporation's website for version upgrade information.

USB cable (3 m)
 LEC - MR - J3USB

* MR-J3USBCBL3M manufactured by Mitsubishi Electric Corporation. Cable for connecting PC and driver when using the setup software (MR Configurator2 ${ }^{\text {TM }}$).
Do not use any cable other than this cable.

Battery (only for LECSB, LECSC or LECSS)

 LEC-MR-J3BAT* MR-J3BAT manufactured by Mitsubishi Electric Corporation. Battery for replacement.
Absolute position data is maintained by installing the battery to the driver.

AC Servo Motor Driver

Absolute Type

Series LECSS-T

(SSCNETIIH Type)

Dimensions
LECSS2-T

AC Servo Motor Driver Series LECSS-T

Specifications

Model	LECSS2-T5	LECSS2-T7	LECSS2-T8
Compatible motor capacity [W]	100	200	400
Compatible encoder	Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$)		
Main \quad Power voltage [V]	Three phase 200 to 240 VAC (50/60 Hz), Single phase 200 to 240 VAC ($50 / 60 \mathrm{~Hz}$)		
power Allowable voltage fluctuation [V]	Three phase 170 to 264 VAC (50/60 Hz), Single phase 170 to 264 VAC ($50 / 60 \mathrm{~Hz}$)		
supply \quad Rated current [A]	0.9	1.5	2.6
Control ${ }^{\text {Control power supply voltage [V] }}$	Single phase 200 to 240 VAC (50/60 Hz)		
power Allowable voltage fluctuation [V]	Single phase 170 to 264 VAC		
supply ${ }^{\text {a }}$ R Rated current [A]	0.2		
Applicable Fieldbus protocol	SSCNET II/H (High-speed optical communication)		
Communication function	USB communication		
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 55 (No freezing)		
Operating humidity range [\%RH]	90 or less (No condensation)		
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-20 to 65 (No freezing)		
Storage humidity range [\%RH]	90 or less (No condensation)		
Insulation resistance [M ${ }^{\text {] }}$	Between the housing and SG: 10 (500 VDC)		
Weight [g]	800		1000

Power Supply Wiring Example: LECSS2-T \square

For single phase 200 VAC

For three phase 200 VAC

Note) For single phase 200 to 240 VAC, power supply should be connected to L_{1} and L_{3} terminals, with nothing connected to L_{2}.
Main Circuit Power Supply Connector: CNP1 * Accessory
LECSS2-T \square
$\begin{array}{|c|c|c|}\hline \text { Termnan name } & \text { Function } & \text { Details } \\$\cline { 1 - 1 } L 1 \& Main circuit
 power supply\end{array} $\left.\begin{array}{c}\text { Connect the main circuit power supply. } \\ \text { LECSS2: Single phase 200 to 240 VAC, } 50 / 60 \mathrm{~Hz} \text { Connection terminal: } \mathrm{L} 1, \mathrm{~L} 3 \\ \text { Three phase 200 to 240 VAC, } 50 / 60 \mathrm{~Hz} \text { Connection terminal: L1,L2,L3 }\end{array}\right]$

Control Circuit Power Supply Connector: CNP2 * Accessory

Termina name	Function	Details
$\mathrm{P}(+)$	Regeneration option	Connect between $\mathrm{P}(+)$ and D . (Connected at time of shipping.) * If regeneration option is required for "Model Selection", connect to this terminal.
C		
D		
L11	Control circuit power supply	Connect the control circuit power supply. LECSS2: Single phase 200 to 240 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L11,L21 Three phase 200 to 240 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L11,L21
L21		

Motor Connector: CNP3 * Accessory

Termina name	Function	
U	Servo motor power (U)	
V	Servo motor power [V]	Conils
W	Servo motor power $[\mathrm{W}]$	

Series LECSS-T

Control Signal Wiring Example: LECSS2-T \square

For sink I/O interface

Options

Motor cable，Lock cable，Encoder cable（LECS \square common）

LE－CSB－$\square \square$ ：Lock cable

LE－CSE－$\square \square$ ：Encoder cable

Product no．	$\varnothing \mathbf{D}$
LEC－CSM－S $\square \mathbf{A}$	6.2
LEC－CSM－S $\square \mathbf{B}$	
LEC－CSM－R $\square \mathbf{A}$	5.7
LEC－CSM－R $\square \mathbf{B}$	
LEC－CSB－S $\square \mathbf{A}$	4.5
LEC－CSB－S $\square \mathbf{B}$	
LEC－CSB－R $\square \mathbf{A}$	

I／O connector（Without cable，Connector only）

	LE－CSN \mathbf{A}
	Driver typed
A	LECSA \square, LECSC \square
B	LECSB \square
S	LECSS \square－S \square, LECSS2－T \square

＊LE－CSNA：10126－3000PE（connector）／10326－52F0－008（shell kit） manufactured by 3 M or equivalent item．
LE－CSNB：10150－3000PE（connector）／10350－52F0－008（shell kit） manufactured by 3 M or equivalent item．
LE－CSNS：10120－3000PE（connector）／10320－52F0－008（shell kit） manufactured by 3 M or equivalent item．
＊Conductor size：AWG24 to 30

Options

SSCNET III optical cable (LECSS \square-S \square, LECSS2-T \square)

* LE-CSS- \square is MR-J3BUS \square M
manufactured by Mitsubishi Electric Corporation.

I/O cable


```
\begin{tabular}{|c|c|}
\hline A & LECSA \(\square\), LECSC \(\square\) \\
\hline B & LECSB \(\square\) \\
\hline S & LECSS \(\square\)-S \(\square\), LECSS2-T \(\square\) \\
\hline
\end{tabular}
```


* LEC-CSNA-1: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
LEC-CSNB-1: 10150-3000PE (connector)/10350-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
LEC-CSNS-1: 10120-3000PE (connector)/10320-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
* Conductor size: AWG24

Cable O.D.

Product no.	\varnothing D
LEC-CSNA-1	11.1
LEC-CSNB-1	13.8
LEC-CSNS-1	9.1

Dimensions/Pin No.

Product no.	W	H	T	U	Pin no. n
LEC-CSNA-1	39	37.2	12.7	14	14
LEC-CSNB-1		52.4		18	26
LEC-CSNS-1		33.3		14	21

Wiring
LEC-CSNA-1: Pin no. 1 to 26
LEC-CSNB-1: Pin no. 1 to 50
LEC-CSNS-1: Pin no. 1 to 20

Connector pin no.		Pair no. of wire	Insulation colour	Dot mark	Dot colour
$\frac{0}{9}$	1	1	Orange	\square	Red
	2			\square	Black
	3	2	Light Grey	\square	Red
	4			\square	Black
	5	3	White	\square	Red
	6			\square	Black
	7	4	Yellow	\square	Red
	8			\square	Black
	9	5	Pink	\square	Red
	10			\square	Black
	11	6	Orange	$\square \square$	Red
	12			■■	Black
	13	7	Light Grey	$\square \square$	Red
	14			$\square \square$	Black
	15	8	White	$\square \square$	Red
	16			-	Black
	17	9	Yellow	■	Red
	18			■	Black

Connector pin no.		Pair no. of wire	Insulation colour	Dot mark	Dot colour
$\begin{aligned} & \frac{0}{0} \\ & \hline 0 \\ & 4 \end{aligned}$	19	10	Pink	■	Red
	20			■	Black
	21	11	Orange	- $=$	Red
	22			- $=$	Black
	23	12	Light Grey	- \square	Red
	24			$\square \square \square$	Black
	25	13	White	$\square \square$	Red
	26			-mm	Black
	27	14	Yellow	■■■	Red
	28			- \quad -	Black
	29	15	Pink	$\square \square \square$	Red
	30			- $=$	Black
	31	16	Orange	■■■■	Red
	32			■■■■	Black
	33	17	Light Grey	■■■■	Red
	34			-mme	Black

Connector pin no.		Pair no. of wire	Insulation colour	Dot mark	Dot colour
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & 4 \end{aligned}$	35	18	White	■■■■	Red
	36			■■■■	Black
	37	19	Yellow	-m■■	Red
	38			-	Black
	39	20	Pink	-mmm	Red
	40			-mmm	Black
	41	21	Orange	-	Red
	42			- mamm	Black
	43	22	Light Grey		Red
	44			■■■■■	Black
	45	23	White	-m■m■	Red
	46			-	Black
	47	24	Yellow	■■■■■	Red
	48			■■■■■	Black
	49	25	Pink	-	Red
	50			■■mmm	Black

Options
Regeneration option (LECS \square common)

LEC - MR - RB - 12

Regeneration option type

032	Allowable regenerative power 30 W
12	Allowable regenerative power 100 W

* Confirm regeneration option to be used in "Model Selection".

LEC-MR-RB-032

LEC-MR-RB-12

Weight
 Electric Corporation.

Weight

Model	Weight [kg]
LEC-MR-RB-032	0.5

* MR-RB032 manufactured by Mitsubishi Electric Corporation.

Series LECSS-T

Options

Setup software (MR Configurator2™) (LECSA, LECSB, LECSC, LECSS common)
LEC-MRC2 E

Display language	
\mathbf{E}	English version
\mathbf{C}	Chinese version

* SW1DNC-MRC2- \square manufactured by Mitsubishi Electric Corporation. Refer to Mitsubishi Electric Corporation's website for operating environment and version upgrade information.
MR Configurator2 ${ }^{\text {TM }}$ is a registered trademark or trademark of Mitsubishi Electric Corporation.

Adjustment, waveform display, diagnostics, parameter read/write, and test operation can be performed upon a PC.
Compatible PC
When using setup software (MR Configurator2 ${ }^{\text {TM }}$), use an IBM PC/AT compatible PC that meets the following operating conditions.

Hardware Requirements

Equipment		Setup software (MR Configurator2 ${ }^{\text {TM }}$) LEC-MRC2
$\begin{aligned} & \begin{array}{l} \text { Note 1) 2) } \\ \text { 3) } \end{array} \\ & \text { 4) 5(6) 7) } 9 \text {) } \\ & \text { PC } \end{aligned}$	OS	Microsoff ${ }^{\circledR}$ Windows ${ }^{\circledR} 8.1$ Enterprise Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR 8} 8.1$ Pro Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR 8.1}$ Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR 8}$ Enterprise Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 8 Pro Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR 8}$ Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR 7}$ Ultimate Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR 7}$ Enterprise Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR 7}$ Professional Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR 7}$ Home Premium Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR 7}$ Starter Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Ultimate Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Enterprise Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Business Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Home Premium Operating System Microsoff ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Home Basic Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ XP Professional Operating System, Service Pack 2 or later Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ XP Home Edition Operating System, Service Pack 2 or later
	Available HD space	1 GB or more
	Communication interface	Use USB port.
Display		Resolution 1024×768 or more Must be capable of high color (16-bit) display. The connectable with the above PC
Keyboard		The connectable with the above PC
Mouse		The connectable with the above PC
Printer		The connectable with the above PC
USB cable Note 8)		LEC-MR-J3USB

Note 1) Before using a PC for setting LECSA point table method/program method, upgrade to version 1.18U (Japanese version)/version 1.19V (English version). Refer to Mitsubishi Electric Corporation's website for version upgrade information.
Note 2) Windows and Windows Vista are registered trademarks of Microsoft Corporation in the United States and other countries.
Note 3) On some PCs, MR Configurator2 may not run properly.
Note 4) When Windows ${ }^{\circledR}$ XP or later is used, the following functions cannot be used.

- Windows Program Compatibility mode
- Fast User Switching
- Remote Desktop
- Large Fonts Mode (Display property)
- DPI settings other than 96 DPI (Display property) For 64-bit operating system, this software is compatible with Windows ${ }^{\circledR} 7$ and Windows ${ }^{\circledR} 8$.
Note 5) When Windows ${ }^{\circledR 7}$ is used, the following functions cannot be used.
- Windows XP Mode
- Windows Touch

Note 6) When using this software with Windows Vista ${ }^{\circledR}$ or later, log in as a user having USER authority or higher.
Note 7) When Windows ${ }^{\circledR} 8$ is used, the following functions cannot be used.

- Hyper-V
- Modern UI style

Note 8) Order USB cable separately.
Note 9) Using a PC for setting Windows ${ }^{\circledR 8} 8.1$, upgrade to version 1.25B or later. Refer to Mitsubishi Electric Corporation's website for version upgrade information.

Setup Software Compatible Driver

Compatible driver	Setup software
	MR Configurator2 ${ }^{\text {TM }}$
LECSA	LEC-MRC2 \square
LECSB	\bigcirc
LECSC	\bigcirc
LECSS $\square-$ - \square	\bigcirc
LECSS2-T \square	\bigcirc

ac Servo Motor Driver Series LECSS-T

Options

Battery (only for LECSS2-T \square)

LEC-MR - BAT6V1SET

* MR-BAT6V1SET manufactured by Mitsubishi Electric Corporation.

Battery for replacement.
Absolute position data is maintained by installing the battery to the driver.

USB cable (3 m)

LEC - MR - J3USB

* MR-J3USB manufactured by Mitsubishi Electric Corporation.

Cable for connecting PC and driver when using the setup software (MR Configurator2 ${ }^{\text {TM }}$).
Do not use any cable other than this cable.

Note) The LEC-MR-BAT6V1SET is an assembled battery that uses

 lithium metal battery 2CR17335A. When transporting lithium metal batteries and devices with built-in lithium metal batteries by a method subject to UN regulations, it is necessary to apply measures according to the regulations stipulated in the United Nations Recommendations on the Transport of Dangerous Goods, the Technical Instructions (ICAO-TI) of the International Civil Aviation Organization (ICAO), and the International Maritime Dangerous Goods Code (IMDG CODE) of the International Maritime Organization (IMO). If a customer is transporting products such as shown above, it is necessary to confirm the latest regulations, or the laws and regulations of the country of transport on your own, in order to apply the proper measures. Please contact SMC sales representative for details.
STO cable (3 m)

LEC-MR - D05UDL3M

* MR-D05UDL3M manufactured by Mitsubishi Electric Corporation.

Cable for connecting the driver and device, when using the safety function. Do not use any cable other than this cable.

Design/Selection

\triangle Warning

1. Use the specified voltage.

If the applied voltage is higher than the specified voltage, malfunction and damage to the driver may result. If the applied voltage is lower than the specified voltage, there is a possibility that the load cannot be moved due to internal voltage drop. Check the operating voltage prior to start. Also, confirm that the operating voltage does not drop below the specified voltage during operation.
2. Do not use the products outside the specifications.

Otherwise, fire, malfunction or damage to the driver/actuator can result. Check the specifications prior to use.
3. Install an emergency stop circuit.

Install an emergency stop outside the enclosure in easy reach to the operator so that the operator can stop the system operation immediately and intercept the power supply.
4. To prevent danger and damage due to a breakdown or malfunction of these products, which may occur at a certain probability, a backup system should be arranged in advance by using a multiple-layered structure or by making a fail-safe equipment design, etc.
5. If there is a risk of fire or personal injury due to abnormal heat generation, sparking, smoke generated by the product, etc., cut off the power supply from this product and the system immediately.
6. The parameters of the driver are set to initial values. Please change parameters according to the specifications of the customer's equipment before use.
Refer to the operation manual for details of parameters.

Handling

\triangle Warning

1. Never touch the inside of the driver and its peripheral devices.
Otherwise, electric shock or failure can result.
2. Do not operate or set up this equipment with wet hands. Otherwise, electric shock can result.
3. Do not use a product that is damaged or missing any components.
Electric shock, fire or injury can result.
4. Use only the specified combination between the electric actuator and driver.
Otherwise, it may cause damage to the driver or to the other equipment.
5. Be careful not to touch, get caught or hit by the workpiece while the actuator is moving. An injury can result.
6. Do not connect the power supply or power up the product until it is confirmed that the workpiece can be moved safely within the area that can be reached by the workpiece.
Otherwise, the movement of the workpiece may cause an accident.
7. Do not touch the product when it is energized and for some time after the power has been disconnected, as it is very hot.
Otherwise, it may cause burns due to the high temperature.
8. Check the voltage using a tester at least 5 minutes after power-off when performing installation, wiring and maintenance.
Otherwise, electric shock, fire or injury can result.

Handling

\triangle Warning

9. Static electricity may cause a malfunction or damage the driver. Do not touch the driver while power is supplied to it.
Take sufficient safety measures to eliminate static electricity when it is necessary to touch the driver for maintenance.
10. Do not use the products in an area where they could be exposed to dust, metallic powder, machining chips or splashes of water, oil or chemicals.
Otherwise, a failure or malfunction can result.
11. Do not use the products in a magnetic field.

Otherwise, a malfunction or failure can result.
12. Do not use the products in an environment where flammable, explosive or corrosive gases, liquids or other substances are present.
Otherwise, fire, explosion or corrosion can result.
13. Avoid heat radiation from strong heat sources, such as direct sunlight or a hot furnace.
Otherwise, it will cause a failure to the driver or its peripheral devices.
14. Do not use the products in an environment with cyclic temperature changes.
Otherwise, it will cause a failure to the driver or its peripheral devices.
15. Do not use the products in an environment where surges are generated.
Devices (solenoid type lifters, high frequency induction furnaces, motors, etc.) that generate a large amount of surge around the product may lead to deterioration or damage to the internal circuits of the products. Avoid supplies of surge generation and crossed lines.
16. Do not install these products in a place subject to vibration and impact.
Otherwise, a malfunction or failure can result.
17. When a surge generating load such as a relay or solenoid valve is directly driven, use a product that incorporates a surge absorption element.

Mounting

\triangle Warning

1. Install the driver and its peripheral devices on fireproof material.
Direct installation on or near flammable material may cause fire.
2. Do not install these products in a place subject to vibration and impact.
Otherwise, a malfunction or failure can result.
3. The driver should be mounted on a vertical wall in a vertical direction.
Also, do not cover the driver's suction/exhaust ports.
4. Install the driver and its peripheral devices on a flat surface.
If the mounting surface is not flat or uneven, excessive force may be applied to the housing and other parts resulting in a
malfunction.

Series LECS \square Specific Product Precautions 2

Be sure to read before handling. Refer to back cover for Safety Instructions. For Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smc.eu

Power Supply

\triangle Caution

1. Use a power supply with low noise between lines and between power and ground.
In cases where noise is high, use an isolation transformer.
2. Take appropriate measures to prevent surges from lightning. Ground the surge absorber for lightning separately from the grounding of the driver and its peripheral devices.

Wiring

© Warning

1. The driver will be damaged if a commercial power supply $(100 \mathrm{~V} / 200 \mathrm{~V})$ is added to the driver's servo motor power (U, V, W). Be sure to check wiring such as wiring mistakes when the power supply is turned on.
2. Connect the ends of the $\mathrm{U}, \mathrm{V}, \mathrm{W}$ wires from the motor cable correctly to the phases ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) of the servo motor power. If these wires do not match up, it is unable to control the servo motor.

Grounding

© Warning

1. For grounding actuator, connect the copper wire of the actuator to the driver's protective earth (PE) terminal and connect the copper wire of the driver to the earth via the control panel's protective earth (PE) terminal. Do not connect them directly to the control panel's protective earth (PE) terminal.

2. In the unlikely event that malfunction is caused by the ground, it may be disconnected.

Maintenance

© Warning

1. Perform maintenance checks periodically.

Confirm wiring and screws are not loose.
Loose screws or wires may cause unexpected malfunction.
2. Conduct an appropriate functional inspection and test after completed maintenance.
In case of any abnormalities (if the actuator does not move or the equipment does not operate properly, etc.), stop the operation of the system.
Otherwise, unexpected malfunction may occur and safety cannot be assured.
Conduct a test of the emergency stop to confirm the safety of the equipment.
3. Do not disassemble, modify or repair the driver or its peripheral devices.
4. Do not put anything conductive or flammable inside the driver.
Otherwise, fire can result.
5. Do not conduct an insulation resistance test or insulation withstand voltage test.
6. Reserve sufficient space for maintenance.

Design the system so that it allows required space for maintenance.

MECHATROLINK Compatible AC Servo Motor Driver

Power supply voltage (V) 200 to 230 VAC

Motor capacity (W)
100/200/400

- Position control, speed control and torque control can be used.
- Control encoder: Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)

DMECHATROLINK-I Type

- Applicable Fieldbus protocol: MMECHATROLINK-II
- Number of connectable drivers: 30 units (Transmission distance: Max. 50 m in total)

Series LECYM

DMECHATROLINK-IIType

- Applicable Fieldbus protocol: MMECHATROLINK-III
- Number of connectable drivers: 62 units Number of connectable drivers: 62 units
(Transmission distance: Max. 75 m between stations)

Series LECYU

Compatible Actuators

Rod Type		
Basic type Series LEY		
Seconday baterey conpaitile		
Disioip procicompaite		
Size	Pushing force	
Size	[N$]$	[mm]
25	485	Up to 400
32	588	Up to 500
63	3343	Up to 800

In-line motor type Series LEY \square D		
Secondary batere compaitle		
Disisioip poot compatible		
Size	Pushing force [N]	$\begin{gathered} \text { Stroke } \\ {[\mathrm{mm}]} \end{gathered}$
25	485	Up to 400
32	736	Up to 500
63	1910	Up to 800

Guide Rod Type					
Guide rod type Series LEYG			Guide rod type/ In-line motor type Series LEYG■D		
Size	Pushing force [N]	Stroke [mm]	Size	Pushing force [N]	Stroke [mm]
25	485		25	485	to 300
32	588	Up to 300	32	736	to 300

Series LECYM/LECYU

Series LECYM/LECYU

System Construction

Absolute encoder compatible Series LECYU

(MIMECHATROUNK-III type)
Provided by customer

Power supply Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$) Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
Provided by customer	
External regenerative resistor Page 242	
If the external regenerative resistor is required it should be provided by the customer. For selection of the external regenerative resis tor, refer to the compatible actuator catalogue.	
Motor cable Page 245	
Standard cable	Robotic cabl
LE-CYM-S $\square \square-\square$	LE-CYM-RD \square - \square
OMotor cable for lock option Page 245	
Standard cable	Robotic cable
LE-CYB-S[D-■	LE-CYB-RDI

Electric actuator	
Slider type	High rigidity slider type
Series LEF	Series LEJ
	Rod type

Encoder cable Page 245	
Standard cable	Robotic cable
LE-CYE-S	LE-CYE-RID

Driver

* Order USB cable (Part no.: LEC-JZ-CVUSB) separately to use this software.

Electric Actuators

AC Servo Motor

Rod Type Series LEY

Motor top/parallel type

In-line motor type

Guide Rod Type Series LEYG

AC Servo Motor Driver Series LECYM/LECYU

Electric Actuator/Rod Type AC Servo Motor Series LEY/LEY-X5
Model Selection

Selection Procedure

Positioning Control Selection Procedure

Check the work load-speed. (Vertical transfer)

Step 2 Check the cycle time.

Selection Example

Operating conditions
-Workpiece weight: 16 [kg] •Speed: 300 [mm/s]

- Acceleration/Deceleration: 5000 [$\mathrm{mm} / \mathrm{s}^{2}$]
- Stroke: 300 [mm]
-Workpiece mounting condition: Vertical upward downward transfer

Check the work load-speed. <Speed-Vertical work load graph>
Select the target model based on the workpiece weight and speed with reference to the <Speed-Vertical work load graph>.
Selection example) The LEY25 $\square \mathbf{B}$ is temporarily selected based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to pages 211 and 212 for the horizontal work load in the specifications, and page 234 for the precautions.

<Speed-Vertical work load graph>
(LEY25 \square)

The regenerative resistor may be necessary. Refer to pages 205 and 206 for "Conditions for Regenerative Resistor (Guide)".

Check the cycle time.

Calculate the cycle time using the following calculation method. - Cycle time T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

Calculation example)
T1 to T4 can be calculated as follows.

L : Stroke [mm] ... (Operating condition)
V : Speed [mm/s] ... (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed
T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop T4: Settling time [s] ... Time until in position is completed
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 5000=0.06[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 5000=0.06[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{300-0.5 \cdot 300 \cdot(0.06+0.06)}{300}=0.94[\mathrm{~s}]$
T4 $=0.05$ [s]
Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.06+0.94+0.06+0.05=1.11[\mathrm{~s}]$

Selection Procedure

Pushing Control Selection Procedure

＊The duty ratio is a ratio at the time that can keep being pushed．

Selection Example

Operating conditions
$\begin{array}{ll}\bullet \text { Mounting condition：Horizontal（pushing）} & \bullet \text { Duty ratio：} 60[\%] \\ \bullet \text {－Jig weight：} 0.5[\mathrm{~kg}] & \bullet \text { Pushing speed：} 35[\mathrm{~mm} / \mathrm{s}]\end{array}$
－Pushing force： 255 ［N］
－Stroke： 300 ［mm］

Check the duty ratio．

＜Conversion table of pushing force－duty ratio＞
Select the［Pushing force］from the duty ratio with reference to the＜Conversion table of pushing force－duty ratio＞．

Selection example）
Based on the table below，
－Duty ratio： 60 ［\％］
Therefore，the set value of pushing force will be 90 ［\％］．
＜Conversion table of pushing force－duty ratio＞
（LEY25／AC Servo motor）

Set value of pushing force［\％］	Duty ratio ［\％］	Continuous pushing time［minute］
75 or less	100	-
90	60	1.5

Duty ratio＝A／B x 100 ［\％］

＜Force conversion graph＞
（LEY25）

＜Graph of allowable lateral load on the rod end＞

Based on the above calculation result，the LEY25B－300 is selected．

Select the target model based on the torque limit／command value and pushing force with reference to the＜Force conversion graph＞．
Selection example）
Based on the graph shown on the right side，
－Torque limit／Command value： 90 ［\％］
－Pushing force： 255 ［N］
Therefore，the LEY25B is temporarily selected．

Check the lateral load on the rod end．
＜Graph of allowable lateral load on the rod end＞
Confirm the allowable lateral load on the rod end of the actuator： LEY25B，which has been selected temporarily with reference to the ＜Graph of allowable lateral load on the rod end＞．
Selection example）
Based on the graph shown on the right side，
\bullet－Jig weight： $0.5[\mathrm{~kg}] \approx 5$［ N$]$
－Product stroke： 300 ［mm］
Therefore，the lateral load on the rod end is in the allowable range．
＊［Set value of pushing force］is one of the data input to the driver．
＊［Continuous pushing time］is the time that the actuator can continuously keep pushing．

Check the pushing force．＜Force conversion graph＞

Therefore，the LEY25B is temporaily selected．

Series LEY/LEY-X5
 Size

Speed-Work Load Graph/Conditions for "Regenerative Resistor" (Guide)

LEY25 \square V6 (Motor mounting position: Top/Parallel, In-line)

Vertical

Horizontal

LEY32 \square V7 (Motor mounting position: Top/Parallel)

Vertical

Horizontal

LEY32DV7 (Motor mounting position: In-line)

Vertical

"Regenerative resistor" area

* When using the actuator in the "Regenerative resistor" area, download the "AC servo capacity selection program/SigmaJunmaSize+" from the SMC website. Then, calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor.
* Regenerative resistor should be provided by the customer.

Horizontal

Applicable Motor/Driver

Model	Applicable model	
	Motor	Servopack (SMC driver)
LEY25 \square	SGMJV-01A3A	SGDV-R90A11 \square (LECYM2-V5) SGDV-R90A21 \square (LECYU2-V5)
LEY32 \square	SGMJV-02A3A	SGDV-1R6A11 SGDV-1R6A21 (LECM2-V7) SECYU2-V7)

Speed-Work Load Graph/Conditions for "Regenerative Resistor" (Guide)

LEY63 \square V8 (Motor mounting position: Top/Parallel, In-line)

Vertical

"Regenerative resistor" area

* When using the actuator in the "Regenerative resistor" area, download the "AC servo capacity selection program/SigmaJunmaSize+" from the SMC website. Then, calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor.
* Regenerative resistor should be provided by the customer.

Horizontal

Applicable Motor/Driver

Product no.	Applicable model	
	Motor	Servopack (SMC driver)
LEY63 \square	SGMJV-04A3A	SGDV-2R8A11 \square (LECYM2-V8) SGDV-2R8A21 \square (LECYU2-V8)

Allowable Stroke Speed

Series LEY/LEY-X5
 Size

Force Conversion Graph (Guide)

LEY25 \square (Motor mounting position: Top/Parallel, In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
75 or less	100	-
90	60	1.5

LEY32 \square (Motor mounting position: Top/Parallel)

LEY63 \square (Motor mounting position: Top/Parallel, In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
75 or less	100	-
90	60	1.5
120	30	0.5
150	20	0.16

LEY32D \square (Motor mounting position: In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
75 or less	100	-
90	60	1.5

Graph of Allowable Lateral Load on the Rod End (Guide)

Size	Non-rotating accuracy θ
25	$\pm 0.8^{\circ}$
$\mathbf{3 2}$	$\pm 0.7^{\circ}$
63	$\pm 0.6^{\circ}$

Rod Displacement: δ

[mm]

Size	Stroke [mm]													
	30	50	100	150	200	250	300	350	400	450	500	600	700	800
25	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 1.7	-	-	-	-	-
32	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8	-	-	-
63	-	± 0.5	± 0.7	± 0.9	± 1.2	± 1.1	± 1.3	± 1.5	± 1.7	± 1.9	± 2.1	± 1.7	± 2.0	± 2.2

Electric Actuator/Rod Type

AC Servo Motor

Series LEY-X5

Please contact SMC for dust-tight/water-jet-proof (IP65 equivalent) and the models compatible with secondary batteries.

How to Order
(1) Accuracy

H	Basic type

3 Motor mounting position
-
R
L
Right side parallel
D

4 Motor type		Water-jet-proof		
Symbol	Type	Output [W]	Size	Compatible driver
V6	AC servo motor (Absolute encoder)	100	25	LECYM2-V5 LECYU2-V5
V7		200	32	LECYM2-V7 LECYU2-V7
V8		400	63	LECYM2-V8 LECYU2-V8

5 Lead [mm]

Symbol	LEY25	LEY32 $* 1$	LEY 63
A	12	$16(20)$	20
B	6	$8(10)$	10
C	3	$4(5)$	5
L	-	-	$2.86 * 2$

*1 The values shown in () are the lead for top mounting, right/left side parallel types. (Equivalent lead which includes the pulley ratio [1.25:1])
*2 Only available for top mounting and right/left side parallel types. (Equivalent lead which includes the pulley ratio [4:7])

Motor option

-	Without option
B	With lock

* When "With lock" is selected for the top mounting and right/left side parallel types, the motor body will stick out of the end of the body for size 25 with strokes 30 mm or less. Check for interference with workpieces before selecting a model.

6 Stroke [mm]

30	30
to	to
800	800

* Refer to the applicable stroke table.

Dust-tight/Water-jet-proof (Only available for LEY63)

Symbol	LEY25/32	LEY63
-	IP4x equivalent	IP5x equivalent (Dust-protected)
\mathbf{P}	-	IP65 equivalent (Dust-tight// Water-jet-proof)/With vent hole tap

* When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water.
* The fitting and tubing should be provided separately by the customer. Select [Applicable tubing O.D.: $\varnothing 4$ or more, Connection thread: Rc1/8].
* Cannot be used in environments exposed to cutting oil etc. Take suitable protective measures.

Applicable Stroke Table

Stroke model $[\mathrm{mm}]$	30	50	100	150	200	250	300	350	400	450	500	600	700	800	Manufacturable stroke range
LEY25	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	15 to 400
LEY32	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-	\bigcirc	\bigcirc	-	-	-	20 to 500
LEY63	-	-	\bigcirc	-	\bigcirc	-	-	-	-	-	-	-	-	-	50 to 800

[^20]For auto switches, refer to pages 232 and 233.

*1 Mounting bracket is shipped together, (but not assembled).
*2 For horizontal cantilever mounting with the ends tapped and rod/head flange, use the actuator within the following stroke range.

LEY25: 200 mm or less • LEY32: 100 mm or less • LEY63: 400 mm or less *3 For mounting with the double clevis, use the actuator within the following stroke range.

LEY25: 200 mm or less • LEY32: 200 mm or less • LEY63: 300 mm or less *4 Rod flange is not available for the LEY25 with strokes 30 mm and motor option "With lock".
*5 Head flange is not available for the LEY32/LEY63.

(11) Cable type

-	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

(12) Cable length [m]

-	Without cable
$\mathbf{3}$	3
$\mathbf{5}$	5
\mathbf{A}	10
\mathbf{C}	20

13 Driver type

	Compatible driver	Power supply voltage [V]
-	Without driver	-
M2	LECYM2-V \square	200 to 230
U2	LECYU2-V \square	200 to 230

* When the driver type is selected, the cable is included. Select cable type and cable length.

(14) I/O cable length [m] *

-	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

* When "Without driver" is selected for driver type, only "-: Without cable" can be selected. Refer to Page 246 if I/O cable is required.
(Options are shown on Page 246.)

Compatible Drivers

Driver type	IAMECHATROLINK-II type	IRMECHATROLINK-III type
Series	LECYM	LECYU
Applicable network	MECHATROLINK-II	MECHATROLINK-II
Control encoder	Absolute 20-bit encoder	
Communication device	USB communication, RS-422 communication	
Power supply voltage [V]	200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
Reference page	Page 239	

Series LEY-X5

Size

Specifications

Model				LEY25 (Top/Parallel)/LEY25D (In-line)			LEY32 (Top/Parallel)			LEY32D (In-line)		
Stroke [mm] ${ }^{\text {Note 1) }}$				$\begin{gathered} 30,50,100,150,200,250 \\ 300,350,400 \end{gathered}$			$\begin{gathered} 30,50,100,150,200,250 \\ 300,350,400,450,500 \end{gathered}$			$\begin{gathered} 30,50,100,150,200,250 \\ 300,350,400,450,500 \end{gathered}$		
Actuator specifications	Work load [kg]		Horizontal Note 2)	18	50	50	30	60	60	30	60	60
			Vertical	8	16	30	9	19	37	12	24	46
	Force [N] Note 3) (Set value: 45 to 90%)			65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	$\begin{aligned} & \text { Max. Note 4) } \\ & \text { speed } \end{aligned}$	Stroke		900	450 300	225 150	1200	600	300	1000	500	250
	[mm/s]	range	405 to 500	-	-	-	800	400	200	640	320	160
	Pushing speed [mm/s] Note 5)			35 or less			30 or less			30 or less		
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5000			5000					
	Positioning repeatability [mm]		Basic type	± 0.02			± 0.02					
			High precision type	± 0.01			± 0.01					
	Lost motion Note 6) [mm]		Basic type	0.1 or less			0.1 or less					
			High precision type	0.05 or less			0.05 or less					
	Lead [mm] (including pulley ratio)			12	6	3	20	10	5	16	8	4
	Impact/Vibration resistance [m/s ${ }^{2}$] Note 7)			50/20			50/20					
	Actuation type			Ball screw + Belt (LEY \square)/Ball screw (LEY \square D)			Ball screw + Belt [1.25:1]			Ball screw		
	Guide type			Sliding bushing (Piston rod)			Sliding bushing (Piston rod)					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condensation)			90 or less (No condensation)					
	$\begin{array}{\|l\|} \hline \text { Conditions for Note 8) } \\ \text { "Regenerative resistor" [kg] } \\ \hline \end{array}$		Horizontal	Not required			Not required					
			Vertical	6 or more			4 or more					
	Motor output/Size			$100 \mathrm{~W} / \square 40$			$200 \mathrm{~W} / \square 60$					
	Motor type			AC servo motor (200 VAC)			AC servo motor (200 VAC)					
	Encoder			Absolute 20-bit encoder (Resolution: 1048576 p/rev)								
	Power consumption [W] Note 9)		Horizontal	45			65			65		
			Vertical	145			175			175		
	Standby power consumption when operating [W] ${ }^{\text {Note 10) }}$		Horizontal	2			2			2		
			Vertical	8			8			8		
	Max. instantaneous power consumption [W] ${ }^{\text {Note 11) }}$			445			724			724		
				Non-magnetizing lock								
				131	255	485	157	308	588	197	385	736
				5.5			6			6		
				$24 \mathrm{VDC}_{-10}^{0}$								

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) The maximum value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Please confirm using actual device.
Note 3) The force setting range (set values for the driver) for the pushing operation with the torque control mode, etc. Set it with reference to "Force Conversion Graph (Guide)" on page 207.
Note 4) The allowable speed changes according to the stroke.
Note 5) The allowable collision speed for the pushing operation with the torque control mode, etc.
Note 6) A reference value for correcting an error in reciprocal operation.
Note 7) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in
the initial state.)
Note 8) The work load conditions which require "Regenerative resistor" when operating at the maximum speed (Duty ratio: 100%). Order the regenerative resistor separately. For details, refer to "Conditions for Regenerative Resistor (Guide)" on pages 205 and 206.
Note 9) The power consumption (including the driver) is for when the actuator is operating.
Note 10) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 11) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating. Note 12) Only when motor option "With lock" is selected.
Note 13) For an actuator with lock, add the power consumption for the lock.

Weight

Product Weight [kg]																				
Series	LEY25 \square (Motor mounting position: Top/Parallel)									LEY32 \square (Motor mounting position: Top/Parallel)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Weight [kg]	1.2	1.3	1.6	1.7	1.9	2.1	2.2	2.4	2.6	2.3	2.4	2.7	3.2	3.5	3.8	4.0	4.3	4.6	4.9	5.2
Series	LEY25D \square (Motor mounting position: In-line)									LEY32D \square (Motor mounting position: In-line)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Weight [kg]	1.2	1.3	1.5	1.7	1.9	2.1	2.3	2.4	2.6	2.3	2.4	2.7	3.2	3.5	3.8	4.1	4.3	4.6	4.9	5.2

Additional Weight

Size		$\mathbf{2 5}]$	$\mathbf{3 2}$
Lock	Male thread	0.30	0.60
Rod end male thread	Nut	0.03	0.03
	0.02	0.02	
Rod flange (including mounting bolt)	0.08	0.14	
Head flange (including mounting bolt)	0.17	0.20	
Double clevis (including pin, retaining ring and mounting bolt)	0.16		

Specifications

Model				LEY63 \square（Top／Parallel）				LEY63D \square（In－line）		
	Stroke［mm］${ }^{\text {Note 1）}}$			50，100，150，200，250，300，350，400，450，500，600，700， 800						
	Work load［kg］		Horizontal Note 2）	40	70	80	200	40	70	80
			Vertical	19	38	72	115	19	38	72
	Force［N］／Set value ${ }^{\text {Note 3）}}$ ： 45 to 150 \％Note 4）			156 to 521	304 to 1012	573 to 1910	1003 to 3343	156 to 521	304 to 1012	573 to 1910
	Note 5） Max．speed ［mm／s］	Stroke range	Up to 500	1000	500	250	70	1000	500	250
			505 to 600	800	400	200		800	400	200
			605 to 700	600	300	150		600	300	150
$\begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$			705 to 800	500	250	125		500	250	125
$\stackrel{0}{\hat{\pi}}$	Pushing speed［mm／s］${ }^{\text {Note 6）}}$			30 or less						
$\underset{\substack{\mathrm{U}}}{\mathrm{U}}$	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］				5000		3000		5000	
菦	Positioning repeatability ［mm］		Basic type	± 0.02						
잉			High precision type	± 0.01						
능	Lost motion［mm］${ }^{\text {Note 7）}}$		Basic type	0.1 or less						
$\frac{\pi}{3}$			High precision type	0.05 or less						
\|	Screw lead［mm］（including pulley ratio）			20	10	5	5 （2．86）	20	10	5
	Impact／Vibration resistance［m／s ${ }^{2}$ ］Note 8）			50／20						
	Actuation type			Ball screw			｜Ball sceew＋Betipulley alio 4，7］	Ball screw		
	Guide type			Sliding bushing（Piston rod）						
	Operating temperature range［ ${ }^{\mathrm{C}}$ ］			5 to 40						
	Operating humidity range［\％RH］			90 or less（No condensation）						
	Conditions for Note 9） ＂Regenerative resistor＂［kg］		Horizontal	Not required						
			Vertical	2.5 or more						
	Motor output／Size						$400 \mathrm{~W} / \square 60$			
	Motor type			AC servo motor（200 VAC）						
	Encoder			Absolute 20－bit encoder（Resolution： $1048576 \mathrm{p} / \mathrm{rev}$ ）						
	Power consumption［W］${ }^{\text {Note 10）}}$		Horizontal	210						
			Vertical				230			
	Standby power consumption when operating［W］Note 11）		Horizontal	2						
			Vertical				18			
	Max．instantaneous power consumption［W］${ }^{\text {Note } 12)}$			1275						
	Type Note 13）			Non－magnetizing lock						
	Holding force［N］			313	607	1146	2006	313	607	1146
	Power consumption［W］at $20^{\circ} \mathrm{C}$ Note 14）			6						
	Rated voltage［V］			24 VDC $_{-10}^{0} \%$						

Note 1）Please consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）The maximum value of the horizontal work load．An external guide is necessary to support the load．The actual work load changes according to the condition of the external guide．Please confirm using actual device．
Note 3）Set values for the driver．
Note 4）The force setting range（set values for the driver）for the pushing operation with the torque control mode etc．The pushing force and duty ratio change according to the set value．Set it with reference to＂Force Conversion Graph（Guide）＂on page 207.
Note 5）The allowable speed changes according to the stroke．
Note 6）The allowable collision speed for the pushing operation with the torque control mode etc．
Note 7）A reference value for correcting an error in reciprocal operation．
Note 8）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 9）The work load conditions which require＂Regenerative resistor＂when operating at the maximum speed（Duty ratio： 100% ）．
Note 10）The power consumption（including the driver）is for when the actuator is operating．
Note 11）The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during the operation．
Note 12）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating．
Note 13）Only when motor option＂With lock＂is selected．
Note 14）For an actuator with lock，add the power consumption for the lock．

Weight

Product Weight

Series	LEY63V8（Motor mounting position：Top／Parallel）												
Stroke［mm］	50	100	150	200	250	300	350	400	450	500	600	700	800
Weight［kg］	4.8	5.3	6.0	6.5	7.7	8.2	8.8	9.3	9.9	10.4	12.1	13.3	14.4
Series	LEY63DV8（Motor mounting position：In－line）												
Stroke［mm］	50	100	150	200	250	300	350	400	450	500	600	700	800
Weight［kg］	5.0	5.5	6.1	6.6	7.8	8.3	9.0	9.5	10.1	10.6	12.3	13.4	14.6

Additional Weight

Size		63
Lock	0.6	
Rod end male thread	Male thread	0.12
Foot（2 sets including mounting bolt）	0.04	
Rod flange（including mounting bolt）	0.51	
Double clevis（including pin， retaining ring and mounting bolt）	0.58	

Series LEY-X5

Size

Construction

Motor top mounting type: LEY 32

Component Parts

No.	Description	Material	Note
1	Body	Aluminium alloy	Anodised
2	Ball screw shaft	Alloy steel	
3	Ball screw nut	Resin/Alloy steel	
4	Piston	Aluminium alloy	
5	Piston rod	Stainless steel	Hard chrome plated
6	Rod cover	Aluminium alloy	
7	Bearing holder	Aluminium alloy	
8	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plated
10	Connected shaft	Free cutting carbon steel	Nickel plated
11	Bushing	Lead bronze cast	
12	Bearing	-	
13	Return box	Aluminium die-cast	Coating
14	Return plate	Aluminium die-cast	Coating
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	POM	Stroke 101 mm or more
18	Screw shaft pulley	Aluminium alloy	
213			

Replacement Parts (Top/Parallel only)/Belt

No.	Size	Order no.	No.	Size	Lead	Order no.
20	25	LE-D-2-2	20	63	A/B/C	LE-D-2-5
	32	LE-D-2-4			L	LE-D-2-6

No.	Description	Material	Note
19	Motor pulley	Aluminium alloy	
20	Belt	-	
21	Parallel pin	Stainless steel	
22	Seal	NBR	
23	Retaining ring	Steel for spring	Phosphate coated
24	Motor adapter	Aluminium alloy	Coating
25	Motor	-	
26	Motor block	Aluminium alloy	Coating
27	Hub	Aluminium alloy	
28	Spider	Urethane	
29	Socket (Male thread)	Free cutting carbon steel	Nickel plated
30	Nut	Alloy steel	Zinc chromated

Electric Actuator/Rod Type Series LEY-X5

AC Servo Motor Size 25, 32, 63

Dimensions: Motor Top/Parallel

IP65 equivalent (Dust-tight/Water-jet-proof): LEY63 $\square \square \square-\square \mathbf{P}$

(View ZZ)

When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer.
Select [Applicable tubing O.D.: Ø 4 or more, Connection thread: Rc1/8].

Size	Stroke range [mm]	A		B	C		D	EH	EV		H			
25	15 to 100	130.5		116	13	20		44	45.5	M8 x 1.2				
	105 to 400	155.5		141										
32	20 to 100	148.5		130	13	25		51	56.5	M8 x 1.2				
	105 to 500	178.5		60										
63	Up to 200	192.6		55.2	21	40		76	82	M16 x 2				
	205 to 500	227.6		90.2										
	505 to 800	262.6		225.2										
Size	Stroke range [mm]	Without lock			With lock					F	G			
		W	X	Z		W		X	Z					
25	15 to 100	82.5	115.5	11	127.5		160.5		11	2	4			
	105 to 400													
32	20 to 100	80	120	14	120		160		14	2	4			
	105 to 500													
63	50 to 200	98.5	138.5	$\begin{gathered} 12.5 \\ (13.5)^{*} \end{gathered}$	138.5		178.5		$\begin{gathered} 12.5 \\ (13.5)^{*} \end{gathered}$	4	8			
	205 to 500													
	505 to 800													

Body Bottom Tapped
[mm]

Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 35	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100										
	105 to 120			42			75				
	125 to 200			59	49.5						
	205 to 400			76	58						
32	20 to 35	25	55	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100			36	43						
	105 to 120			36			80				
	125 to 200			53	51.5						
	205 to 500			70	60						
63	50 to 70	38	52.2	24	50	44	65	M8 x 1.25	10	6	7
	75 to 120			45	60.5						
	125 to 200			58	67						
	205 to 500			86	81		100				
	505 to 800						135				

Series LEY-X5

Size 25, 32, 63
AC Servo Motor

Dimensions: Motor Top/Parallel

Motor left side parallel type: LEY 32 L 63

25
Motor right side parallel type: LEY 32 R
63

Note) When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

Dimensions: In-line Motor

Section XX details

Rod operating range Note 1)

Note 1) Range within which the rod can move.
Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) The direction of rod end width across flats $(\square \mathrm{K})$ differs depending on the products.

(View ZZ)

* When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer.
Select [Applicable tubing O.D.: Ø 4 or more, Connection thread: Rc1/8].

Series LEY-X5

Size

Dimensions

* Refer to page 25 for details about the rod end nut and mounting bracket.
Note) Refer to the "Mounting" precautions on pages 235 and 236 when mounting end brackets such as knuckle joint or workpieces.

Size	\mathbf{B}_{1}	\mathbf{C}_{1}	\mathbf{H}_{1}	$\mathbf{L}_{1}{ }^{*}$	\mathbf{L}_{2}	$\mathbf{M M}$
$\mathbf{2 5}$	22	20.5	8	38	23.5	$\mathbf{M} 14 \times 1.5$
$\mathbf{3 2}$	22	20.5	8	42.0	23.5	$\mathrm{M} 14 \times 1.5$
$\mathbf{6 3}$	27	26	11	76.4	39	$\mathrm{M} 18 \times 1.5$

* The L_{1} measurement is when the unit is in the Z phase first detecting position. At this position, 2 mm at the end (size 25,32) and 4 mm at the end (size 63).

25
Foot: LEY 32 $\square \square$ - $\square \square \square \mathrm{L}$

Outward mounting

Foot														[mm
Size	Stroke range [mm]	A	LS	LS 1	LL	LD	LG	LH	LT	LX	LY	LZ	X	Y
25	15 to 100	136.6	98.8	19.8	8.4	6.6	3.5	30	2.6	57	51.5	71	11.2	5.8
	105 to 400	161.6	123.8											
32	20 to 100	155.7	114	19.2	11.3	6.6	4	36	3.2	76	61.5	90	11.2	7
	105 to 500	185.7	144											
63	50 to 200	200.8	133.2	25.2	29.2	8.6	5	50	3.2	95	88	110	14.2	8
	205 to 500	235.8	168.2											
	505 to 800	270.8	203.2											

Material: Carbon steel (Chromate treated)

* The A measurement is when the unit is in the Z-phase first detecting position. At this position, 2 mm at the end (size 25,32) and 4 mm at the end (size 63).
Note) When the motor mounting is the right or left side parallel type, the head side foot should be mounted outwards.

Dimensions

Head flange: $L E Y{ }_{32}^{25} \square \square \stackrel{A}{\mathrm{C}}-\square \square \square \mathrm{G}$

Head flange is not available for the LEY32/LEY63.

Rod/Head Flange							
Size	FD	FT	FV	FX	FZ	LL	\mathbf{M}
$\mathbf{2 5}$	5.5	8	48	56	65	6.5	34
$\mathbf{3 2}$	5.5	8	54	62	72	10.5	40
$\mathbf{6 3}$	9	9	80	92	108	28.4	60

Material: Carbon steel (Nickel plated)

* The LL measurement is when the unit is in the Z-phase first detecting position. At this position, 2 mm at the end (size 25,32) and 4 mm at the end (size 63).

Included parts
- Double clevis
- Body mounting bolt
- Clevis pin
- Retaining ring

* Refer to Electric Actuators catalogue (CAT.E102) for details about the rod end nut and mounting bracket.
Double Clevis
[mm]

Size	Stroke range [mm]	A		CL		CD	CT
25	15 to 100	160.5		150.5		10	5
	105 to 200	185.5		175.5			
32	20 to 100	180.5		170.5		10	6
	105 to 200	210	0.5	200.5			
63	50 to 200	236.6		22		14	8
	205 to 500	271.6		257.6		-	-
	505 to 800	306.6		292.6		-	-
Size	Stroke range [mm]	CU	CW	CX	CZ	L	RR
25	15 to 100	14	20	18	36	14.5	10
	105 to 200						
32	20 to 100	14	22	18	36	18.5	10
	105 to 200						
63	50 to 200	22	30	22	44	37.4	14
	205 to 500						
	505 to 800						

Material: Cast iron (Coating)

* The A and CL measurements are when the unit is in the Z-phase first detecting position. At this position, 2 mm at the end (size 25,32) and 4 mm at the end (size 63).

Moment Load Graph

Selection conditions

Mounting position	Vertical	Horizontal	
Max. speed [mm/s]	"Speed-Work Load Graph"	200 or less	Over 200
Graph (Sliding bearing type)	(1), (2)	(5), (6)*	(7), 8)
Graph (Ball bushing bearing type)	(3), (4)	(9), (10)	(11), (12)

* For the sliding bearing type, the speed is restricted with a horizontal/moment load.

Vertical Mounting, Sliding Bearing

* The limit of vertical load mass varies depending on "lead" and "speed". Check "Speed-Work Load Graph" on page 221.

Vertical Mounting, Ball Bushing Bearing

* The limit of vertical load mass varies depending on "lead" and "speed". Check "Speed-Work Load Graph" on page 221.

Moment Load Graph

Horizontal Mounting, Sliding Bearing

(7) $\mathrm{L}=50 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

(6) $L=100 \mathrm{~mm}$ Max. speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(8) $L=100 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

Horizontal Mounting, Ball Bushing Bearing
(9) $L=\mathbf{5 0 ~ m m}$ Max. speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(11) $L=50 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

(10) $L=100 \mathrm{~mm}$ Max. speed $=200 \mathrm{~mm} / \mathrm{s}$ or less

(12) $L=100 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

Operating Range when Used as Stopper

LEYG \square M (Sliding bearing)

\triangle Caution

Handling Precautions

Note 1) When used as a stopper, select a model with 30 stroke or less.
Note 2) LEYG \square (ball bushing bearing) cannot be used as a stopper.
Note 3) Workpiece collision in series with guide rod cannot be permitted (Fig. a).
Note 4) The body should not be mounted on the end. It must be mounted on the top or bottom (Fig. b).

Series LEYG

AC Servo Motor

Speed-Work Load Graph/Conditions for "Regenerative Resistor" (Guide)

LEYG25 \square V6 (Motor mounting position: Top mounting/In-line)

Horizontal

LEYG32 \square V7 (Motor mounting position: Top mounting)

LEYG32 \square DV7 (Motor mounting position: In-line)

Vertical

"Regenerative resistor" area

* When using the actuator in the "Regenerative resistor" area, download the "AC servo capacity selection program/SigmaJunmaSize+" from the SMC website. Then, calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor.
* Regenerative resistor should be provided by the customer.

Horizontal

Applicable Motor/Driver

Model	Applicable model	
	Motor	Servopack (SMC driver)
LEYG25 \square	SGMJV-01A3A	SGDV-R90A11 \square (LECYM2-V5) SGDV-R90A21 \square (LECYU2-V5)
LEYG32 \square	SGMJV-02A3A	SGDV-1R6A11 \square (LECYM2-V7) SGDV-1R6A21 \square (LECYU2-V7)

Force Conversion Graph
LEYG25 \square (Motor mounting position: Top mounting/ln-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
75 or less	100	-
90	60	1.5

LEYG32D (Motor mounting position: In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
75 or less	100	-
90	60	1.5

LEYG32 \square (Motor mounting position: Top mounting)

Series LEYG

AC Servo Motor

Allowable Rotational Torque of Plate: T

$\mathrm{T}[\mathrm{N} \cdot \mathrm{m}]$

Model	Stroke $[\mathrm{mm}]$				
	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$
LEYG25M	1.56	1.29	3.50	2.18	1.36
LEYG25L	1.52	3.57	2.47	2.05	1.44
LEYG32M	2.55	2.09	5.39	3.26	1.88
LEYG32L	2.80	5.76	4.05	3.23	2.32

Non-rotating Accuracy of Plate: θ

Size	LEYG \square M	LEYG $\square \mathbf{L}$
$\mathbf{2 5}$	$\pm 0.05^{\circ}$	$\pm 0.04^{\circ}$
$\mathbf{y n} \mathbf{3 2}$		

Plate Displacement: δ

Model	Stroke [mm]				
	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$
LEYG25M	± 0.26	± 0.31	± 0.25	± 0.38	± 0.36
LEYG25L	± 0.13	± 0.13	± 0.17	± 0.20	± 0.23
LEYG32M	± 0.23	± 0.29	± 0.23	± 0.36	± 0.34
LEYG32L	± 0.11	± 0.11	± 0.15	± 0.19	± 0.22

Speciific Product	LECY■	LECSS-T	LECS \square			JXC7738392933	JXC $\square 1$	LECPA	LECP1	LEC-G	$\begin{aligned} & \text { LECA6 } \\ & \text { LECP6 } \end{aligned}$	Seno Motr (24 VOC)/Sitep Motor (Seno224 VDC)		ModelSelection
				LEYG	LEY							LEYG	LEY	

Electric Actuator/Guide Rod Type

AC Servo Motor
Series LEYG
LEYG25, 32

How to Order

Lead [mm]

Symbol	LEYG25	LEYG32 *
A	12	$16(20)$
B	6	$8(10)$
C	3	$4(5)$

* The values shown in () are the lead for top mounting type. (Equivalent lead which includes the pulley ratio [1.25:1])

Stroke [mm]

30	30
to	to
$\mathbf{3 0 0}$	300

* Refer to the applicable stroke table.
* There is a limit for mounting size 32 top mounting type and 50 mm stroke or less. Refer to the dimensions.

8 Motor option

-	Without option
\mathbf{B}	With lock

* When "With lock" is selected for the top mounting type, the motor body will stick out of the end of the body for size 25 with strokes 30 mm or less. Check for interference with workpieces before selecting a model.

(11) Cable length [m]

-	Without cable
$\mathbf{3}$	3
$\mathbf{5}$	5
\mathbf{A}	10
\mathbf{C}	20

Applicable Stroke Table

Model	Stroke [mm]	30	50	100	150	200	250	300
LEYG25	\bullet	Manufacturable stroke range						
LEYG32	\bullet	20 to 300						

[^21]
Driver type

| 12 Driver type |
| :--- |$|$| | Compatible driver |
| :---: | :---: |
| | Power supply voltage [V] |
| - | Without driver |
| M2 | LECYM2-V \square |
| U2 | LECYU2-V \square |

* When the driver type is selected, the cable is included.
Select cable type and cable length.
(13) I/O cable length [m] *

-	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

* When "Without driver" is selected for driver type, only "-: Without cable" can be selected.
Refer to Page 246 if I/O cable is required.
(Options are shown on Page 246.)

Use of auto switches for the guide rod type LEYG series

Insert the auto switch from the front side with rod (plate) sticking out.

- For the parts hidden behind the guide attachment (Rod stick out side), the auto switch cannot be fixed. . Consult with SMC when using auto switch on the rod stick out side.

Compatible Drivers

Driver type	MECHATROLINK-II type	MMECHATROLINK-III type
Series	LECYM	LECYU
Applicable network	MECHATROLINK-I	MECHATROLINK-III
Control encoder	Absolute 20-bit encoder	
Communication device	USB communication, RS-422 communication	
Power supply voltage [V]	200 to 230 VAC (50/60 Hz)	
Reference page	Page 239	

Series LEYG

AC Servo Motor

Specifications

Model			LEYG25는（Top mounting） LEYG25MD（In－line）			LEYG32 ${ }_{\text {L }}$（Top mounting）			LEYG32 ${ }^{\text {M }}$（（ n －line）		
Stroke［mm］${ }^{\text {Note 1）}}$			$\begin{gathered} 30,50,100,150, \\ 200,250,300 \end{gathered}$			$\begin{gathered} 30,50,100,150, \\ 200,250,300 \end{gathered}$			$\begin{gathered} 30,50,100,150, \\ 200,250,300 \end{gathered}$		
		Horizontal ${ }^{\text {Node 2］}}$	18	50	50	30	60	60	30	60	60
	Work load［kg］	Vertical	7	15	29	7	17	35	10	22	44
	Force［N］Note 3） （Set value： 45 to 90% ）		65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max．speed［mm／s］		900	450	225	1200	600	300	1000	500	250
	Pushing speed［mm／s］Note 4） Max．acceleration／deceleration［mm／s²］		35 or less			30 or less			30 or less		
			5000			5000					
	Positioning repeatability［mm］	Basic type	± 0.02			± 0.02					
		High precision type	± 0.01			± 0.01					
	Lost motion［mm］	Basic type	0.1 or less			0.1 or less					
		Hightrectision type	0.05 or less			0.05 or less					
	Lead［mm］（including pulley ratio）		12	6	3	20	10	5	16	8	4
	4 ［ ImpactVibration resistance $\left[\mathrm{m} / \mathrm{s}^{2}\right]^{\text {Note } 5)}$		50／20			50／20					
			Ball screw＋Belt［1：1］／Ball screw			Ball screw＋Belt［1：1．25］			Ball screw		
	Guide type		Sliding bearing（LEYGロM），Ball bushing bearing（LEYGロL）								
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40			（ 5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）			90 or less（No condensation）					
	Conditions for Note 6 ）	Horizontal	Not required			Not required					
	＂Regenerative resistor＂${ }^{\text {［kg］}}$	Vertical	5 or more			2 or more					
\％	Motor output／Size		$100 \mathrm{~W} / \square 40$			$200 \mathrm{~W} / \square 60$					
	Motor type		AC servo motor（200 VAC）			AC servo motor（200 VAC）					
	Encoder		Absolute 20－bit encoder（Resolution： $1048576 \mathrm{p} / \mathrm{rev}$ ）								
	Power consumption［W］Note 7）	Horizontal	45			65			65		
		Vertical	145			175			175		
	Standby power consumption	Horizontal	2			2			2		
	when operating［W］${ }^{\text {Voit } 8)}$	Vertical	8			8			8		
			445			724			724		
			Non－magnetizing lock			Non－magnetizing lock					
㜢			131	255	485	157	308	588	197	385	736
			5.5			6 6			6		
Rated voltage［V］											

Note 1）Please consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）The maximum value of the horizontal work load．An external guide is necessary to support the load．The actual work load changes according to the condition of the external guide．Please confirm using actual device．
Note 3）The force setting range（set values for the driver）for the pushing operation with the torque control mode，etc．Set it with reference to＂Force Conversion Graph＂on page $२ 22$.
Note 4）The allowable collision speed for the pushing operation with the torque control mode，etc．
Note 5）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．） Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）

Note 6）The work load conditions which require＂Regenerative resistor＂when operating at the maximum speed（Duty ratio： 100% ）．Order the regenerative resistor separately．For details，refer to＂Conditions for Regenerative Resistor （Guide）＂on page 221.
Note 7）The power consumption（including the driver）is for when the actuator is operating．
Note 8）The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during operation．
Note 9）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating． Note 10）Only when motor option＂With lock＂is selected．
Note 11）For an actuator with lock，add the power consumption for the lock．

Weight

Product Weight：Top Mounting Type

Series	LEYG25M							LEYG32M						
Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Weight［kg］	1.7	1.9	2.2	2.6	3.0	3.3	3.6	3.1	3.4	4.0	4.7	5.3	5.7	6.2
Series	LEYG25L							LEYG32L						
Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Weight［kg］	1.7	1.9	2.2	2.6	2.9	3.2	3.4	3.1	3.4	3.8	4.5	5.0	5.5	5.9

Product Weight：In－line Motor Type

Series	LEYG25MD							LEYG32MD						
Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Weight［kg］	1.7	1.9	2.2	2.6	3.0	3.3	3.6	3.2	3.4	4.0	4.7	5.3	5.8	6.2
Series	LEYG25LD							LEYG32LD						
Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Weight［kg］	1.7	2.0	2.2	2.6	2.9	3.2	3.4	3.2	3.4	3.8	4.6	5.0	5.5	5.9

Additional Weight

［kg］		
Size	$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	0.3	0.6

Construction
Motor mounting position: Top mounting type

LEYG $\square \mathrm{M}$

LEYG \square L

Component Parts

No.	Description	Material	Note
1	Body	Aluminium alloy	Anodised
2	Ball screw shaft	Alloy steel	
3	Ball screw nut	-	
4	Piston	Aluminium alloy	
5	Piston rod	Stainless steel	Hard chrome plated
6	Rod cover	Aluminium alloy	
7	Bearing holder	Aluminium alloy	
8	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plated
10	Connected shaft	Free cutting carbon steel	Nickel plated
11	Bushing	Lead bronze cast	
12	Bearing	-	
13	Return box	Aluminium die-cast	Trivalent chromated
14	Return plate	Aluminium die-cast	Trivalent chromated
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	POM	Stroke 101 mm or more
18	Screw shaft pulley	Aluminium alloy	

Support Block

Size	Order no.
$\mathbf{2 5}$	LEYG-S025
$\mathbf{3 2}$	LEYG-S032

* Two body mounting bolts are included with the support block.

No.	Description	Material	Note
19	Motor pulley	Aluminium alloy	
20	Belt	-	
21	Parallel pin	Stainless steel	
22	Seal	NBR	
23	Retaining ring	Steel for spring	Phosphate coated
24	Motor adapter	Aluminium alloy	Anodised
25	Motor	-	
26	Motor block	Aluminium alloy	Anodised
27	Hub	Aluminium alloy	
28	Spider	Urethane	
29	Guide attachment	Aluminium alloy	Anodised
30	Guide rod	Carbon steel	
31	Plate	Aluminium alloy	Anodised
32	Plate mounting bolt	Carbon steel	Nickel plated
33	Guide bolt	Carbon steel	Nickel plated
34	Sliding bearing	-	
35	Retaining ring	Steel for spring	Phosphate coated
36	Ball bushing	-	

Replacement Parts/Belt

Size	Order no.
$\mathbf{2 5}$	LE-D-2-2
$\mathbf{3 2}$	LE-D-2-4

Series LEYG

AC Servo Motor

Dimensions: Top Mounting

LEYG \square M, LEYG \square L Common

Size	Stroke [mm	range]	A	B	C	DA	EA	EB	EH	EV	FA	FB	FC	G	GA	H	J	K	M	NA	NB	NC
25	15 to		141.5	116	50	20	46	85	103	52.3	11	14.5	12.5	5.4	40.3	98.8	30.8	29	34	M5 x 0.8	8	6.5
	40 to	100			67.5																	
	105 to	120	166.5	141																		
	125 to	200			84.5																	
	205 to	300			102																	
32	20 to	35	160.5	130	55	25	60	101	123	63.8	12	18.5	16.5	5.4	50.3	125.8	38.3	30	40	M6 $\times 1.0$	10	8.5
	40 to	100	190.5	160	68																	
	105 to	120																				
	125 to	200			85																	
	205 to	300			102																	
Size	Stroke [mm	$\begin{aligned} & \text { range } \\ & \mathrm{n}] \end{aligned}$	OA	OB	P	Q	S	T	U	V	WA	WB	WC	X	XA	XB	Y	Z				
25	15 to		M6x 1.0	12	80	18	30	95	6.8	40	35	26	70	54	4	5	26.5	8.5				
	40 to	100									50	33.5										
	105 to	120											95									
	125 to	200									70	43.5										
	205 to	300									85	51										
	20 to		M6 $\times 1.0$	12	95	28	40	117	7.3	60	40	28.5	75	64	5	6	34	8.5				
	40 to	100									50	33.5										
32	105 to	120											105									
	125 to	200									70	43.5										
	205 to	300									85	51										
Size	Without lock			With lock																		
	VA	VB	VC	VA	VB		VC															
25	115.5	82.5	11	160.5	127.5		11															
32	120	80	14	160	120		14															

Electric Actuator/Guide Rod Type Series LEYG

Dimensions: In-line Motor

Section Y details

Note 1) Range within which the rod can move. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod. Note 2) The Z-phase first detecting position from the stroke end of the motor side
LEYG $\square \mathrm{L}$ (Ball bushing bearing) [mm]

Size	Stroke range $[\mathrm{mm}]$	\mathbf{L}	DB
$\mathbf{2 5}$	15 to 110	91	
	115 to 190	115	10
	195 to 300	133	
$\mathbf{3 2}$	20 to 110	97.5	13
	115 to 190	116.5	
	195 to 300	134	

LEYG $\square \mathbf{M}$ (Sliding bearing)			[mm]
Size	Stroke range $[\mathrm{mm}]$	L	DB
$\mathbf{2 5}$	15 to 55	67.5	
	60 to 185	100.5	12
	190 to 300	138	
$\mathbf{3 2}$	20 to 55	74	
	60 to 185	107	16
	190 to 300	144	

Series LEYG

AC Servo Motor

Support Block

Guide for support block application

When the stroke exceeds 100 mm and the mounting orientation is horizontal, the body will be bent. Mounting the support block is recommended. (Please order it separately from the models shown below.)

Support Block Model

LEYG-S025

- Size

$\mathbf{0 2 5}$	For size 25
$\mathbf{0 3 2}$	For size 32

\triangle Caution

Do not install the body using only a support block.
The support block should be used only for support.

Size	Model	Stroke range	EB	G	GA	OA	OB	ST	WC	X
25	LEYG-S025	15 to 100	85	5.4	40.3	M6 x 1.0	12	20	70	54
		105 to 300							95	
32	LEYG-S032	20 to 100	101	5.4	50.3	M6 x 1.0	12	22	75	64
		105 to 300							105	

[^22]
Solid State Auto Switch Direct Mounting Style D-M9N(V)/D-M9P(V)/D-M9B(V)
 RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.

\triangle Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to SMC website for details about products conforming to the international standards.

D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED lights up when turned ON.					
Standards	CE marking, RoHS					

Oilproof Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N \square	D-M9P \square	D-M9B \square		
Sheath	Outside diameter $[\mathrm{mm}]$	2.7×3.2 (ellipse)				
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)			
	Outside diameter $[\mathrm{mm}]$	$\varnothing 0.9$				
Conductor	Effective area $[\mathrm{mm} 2]$	0.15				
	Strand diameter $[\mathrm{mm}]$	$\varnothing 0.05$				
Minimum bending radius $[\mathrm{mm}]$ (Reference value)		20				

Note 1) Refer to the Best Pneumatics No. 2 for solid state auto switch common specifications. Note 2) Refer to the Best Pneumatics No. 2 for lead wire lengths.

Weight

[g]

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length	$0.5 \mathrm{~m}(-)$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

2-Colour Indication Solid State Auto Switch Direct Mounting Style
 D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

Refer to SMC website for details about

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.
- The optimum operating range can be determined by the colour of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used
products conforming to the international standards.
Auto Switch Specifications

				PLC: Prog	mable L	c Controller
D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range Red LED lights up. Optimum operating range Green LED lights up.					
Standards	CE marking, RoHS					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW \square	D-M9PW \square	D-M9BW \square
Sheath	Outside diameter [mm]	2.7×3.2 (ellipse)		
Insulator	Number of cores	3 cores	e/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$\varnothing 0.9$		
Conductor	Effective area [mm^{2}]	0.15		
	Strand diameter [mm]	$\varnothing 0.05$		
Minimum bending radius [mm] (Reference value)		20		

Note 1) Refer to the Best Pneumatics No. 2 for solid state auto switch common specifications. Note 2) Refer to the Best Pneumatics No. 2 for lead wire lengths.

Weight
[g]

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Lead wire length	$0.5 \mathrm{~m}(-)$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

D-M9 $\square \mathbf{W}$

D-M9 \square WV

Series LEY/LEYG

Electric Actuators/

\triangleSpecific Product Precautions 1
Be sure to read this before handling. For Safety Instructions and Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smc.eu

Design/Selection

© Warning

1. Do not apply a load in excess of the operating limit.

Select a suitable actuator by work load and allowable lateral load on the rod end. If the product is used outside of the operating limit, the eccentric load applied to the piston rod will be excessive and have adverse effects such as creating play on the sliding parts of the piston rod, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause failure.
3. When used as a stopper, select the LEYG series "Sliding bearing" for a stroke of 30 mm or less.
4. When used as a stopper, fix the main body with a guide attachment ("Top mounting" or "Bottom mounting"). If the end of the actuator is used to fix the main body (end mounting), the excessive load acts on the actuator, which adversely affects the operation and life of the product.
Handling

\triangle Caution

1. When the pushing operation is used, be sure to set to "Torque control mode", and use within the specified pushing speed range for each series.
Do not allow the piston rod to hit the workpiece and end of the stroke in the "Position control mode", "Speed control mode" or "Positioning mode". The lead screw, bearing and internal stopper may be damaged and lead to malfunction.
2. When operating with "Torque control mode", the value of the internal torque limit or the external torque limit (LECY) should be set to 90% or less. (150 \% or less only for the LEY63)
It may lead to damage and malfunction.
3. The forward/reverse torque limit is set to 800% as default.
When the product is operated with a smaller value than 300%, acceleration when driving can decrease. Set the value after confirming the actual device to be used.
4. The maximum speed of this actuator is affected by the product stroke.
Check the model selection section of the catalogue.
5. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
Additional force will cause the displacement of the origin position.
6. Do not scratch or dent the sliding parts of the piston rod, by striking or attaching objects.
The piston rod and guide rod are manufactured to precise tolerances, even a slight deformation may cause malfunction.
7. When an external guide is used, connect it in such a way that no impact or load is applied to it.
Use a freely moving connector (such as a floating joint).
8. Do not operate by fixing the piston rod and moving the actuator body.
Excessive load will be applied to the piston rod, leading to damage to the actuator and reduced the life of the product.

Handling

© Caution

9. When an actuator is operated with one end fixed and the other free (ends tapped (standard), flange type), a bending moment may act on the actuator due to vibration generated at the stroke end, which can damage the actuator. In such a case, install a mounting bracket to suppress the vibration of the actuator body or reduce the speed so that the actuator does not vibrate.
Also, use a mounting bracket when moving the actuator body or when a long stroke actuator is mounted horizontally and fixed at one end.
10. Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.
This may cause deformation of the non-rotating guide, abnormal responses of the auto switch, play in the internal guide or an increase in the sliding resistance.
Refer to the table below for the approximate values of the allowable range of rotational torque.

Allowable rotational torque $[\mathrm{N} \cdot \mathrm{m}]$ or less	LEY25 \square	LEY32	LEY63
	1.1	1.4	2.8

When screwing in a bracket or nut to the end of the piston rod, hold the flats of the rod end with a wrench (the piston rod should be fully retracted). Do not apply tightening torque to the non-rotating mechanism.

11. When using auto switch with the guide rod type LEYG series, the following limits will be in effect. Please select the product while paying attention to this.

- Insert the auto switch from the front side with rod (plate) sticking out.
- The auto switches with perpendicular electrical entry cannot be used.
- For the parts hidden behind the guide attachment (Rod stick out side), the auto switch cannot be fixed.
- Consult with SMC when using auto switch on the rod stick out side.

Enclosure

 Second characteristic numeral

- First Characteristics:

Degrees of protection against solid foreign objects

$\mathbf{0}$	Non-protected
$\mathbf{1}$	Protected against solid foreign objects of 50 mm and greater
$\mathbf{2}$	Protected against solid foreign objects of 12 mm and greater
$\mathbf{3}$	Protected against solid foreign objects of 2.5 mm and greater
$\mathbf{4}$	Protected against solid foreign objects of 1.0 mm and greater
$\mathbf{5}$	Dust-protected
$\mathbf{6}$	Dust-tight

Enclosure

Series LEY/LEYG
 Electric Actuators/ Specific Product Precautions 2

\triangle
Be sure to read this before handling. For Safety Instructions and Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smc.eu

Enclosure

- Second Characteristics:

Degrees of protection against water

$\mathbf{0}$	Non-protected	-
$\mathbf{1}$	Protected against vertically falling water drops	Dripproof type 1
$\mathbf{2}$	Protected against vertically falling water drops when enclosure tilted up to 15°	Dripproof type 2
$\mathbf{3}$	Protected against rainfall when enclosure tilted up to 60	Rainproof type
$\mathbf{4}$	Protected against splashing water	Splashproof type
$\mathbf{5}$	Protected against water jets	Water-jet- proof type
$\mathbf{6}$	Protected against powerful water jets	Powerful water- jet-proof type
$\mathbf{7}$	Protected against the effects of temporary immersion in water	Immersible type
$\mathbf{8}$	Protected against the effects of continuous immersion in water	Submersible type

Example) IP65: Dust-tight, Water-jet-proof type
"Water-jet-proof type" means that no water intrudes inside an equipment that could hinder from operating normally by means of applying water for 3 minutes in the prescribed manner. Take appropriate protection measures, since a device is not usable in an environment where a droplet of water is splashed constantly.

Mounting

\triangle Caution

1. When mounting workpieces or jigs to the piston rod end, hold the flats of the piston rod end with a wrench so that the piston rod does not rotate. The bolt should be tightened within the specified torque range.
This may cause abnormal responses of the auto switch, play in the internal guide or an increase in the sliding resistance.
2. When mounting the product and/or a workpiece, tighten the mounting screws within the specified torque range.
Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

<Series LEY>

Workpiece fixed/Rod end female thread

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in	End socket widh depth $[\mathrm{mm}]$ across flats $[\mathrm{mm}]$
LEY25	$\mathrm{M} 8 \times 1.25$	12.5	13	17
LEY32	$\mathrm{M} 8 \times 1.25$	12.5	13	22
LEY63	$\mathrm{M} 16 \times 2$	106	21	36

Workpiece fixed/Rod end male thread

$\xrightarrow{\text { Rod end nut }}$	Model	Bolt	Max. tightening torque [$\mathrm{N} \cdot \mathrm{m}$]	Effective thread length [mm]	End socket width across flats [mm]
	LEY25	M14 $\times 1.5$	50	20.5	17
	LEY32	M14 $\times 1.5$	50	20.5	22
	LEY63	M18 $\times 1.5$	97	26	36
	Model	Rod end	end nut	End backet	
(1)	Model	With acoosflas [mm]	Length [mm]	screwindepoth [mm]	
(1)	LEY25	22	8	14	
$\xrightarrow{\rightarrow+}$	LEY32	22	8	14	
End bracket	LEY63	27	11	18	

Mounting

\triangle Caution

Body fixed/Body bottom tapped style (When "Body bottom tapped" is selected.)

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$
LEY25	M5 $\times 0.8$	3.0	6.5
LEY32	M6 $\times 1.0$	5.2	8.8
LEY63	M8 $\times 1.25$	12.5	10

Body fixed/Rod side/Head side tapped style

<Series LEYG>

Workpiece fixed/Plate tapped style

	Model	Bolt	Max. tightening torque [$\mathrm{N} \cdot \mathrm{m}$]	Max. screw-in depth [mm]
\bigcirc	LEYG25 ${ }_{\text {L }}$	M6 x 1.0	5.2	11
	LEYG32 ${ }_{\text {L }}$	M6 x 1.0	5.2	12

Body fixed/Top mounting

Body fixed/Bottom mounting

Body fixed/Head side tapped style

Model	Bolt	Max. tightening torque $(\mathrm{N} \cdot \mathrm{m})$	Max. screw-in depth $[\mathrm{mm}]$
LEYG25 $^{\mathrm{L}}$	$\mathrm{M} 5 \times 0.8$	3.0	8
LEYG32	L	$\mathrm{M} 6 \times 1.0$	5.2

Electric Actuators/ Specific Product Precautions 3

Be sure to read this before handling. For Safety Instructions and Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smc.eu

Mounting

\triangle Caution

3. Keep the flatness of the mounting surface within the following ranges when mounting the actuator body and workpiece.
Unevenness of a workpiece or base mounted on the body of the product may cause an increase in the sliding resistance.

| Model | Mounting position | | Flatness |
| :---: | :--- | :--- | :--- | :--- | :--- |
| LEY \square | Body/Body bottom | | 0.1 mm |
| or less | | | |$|$

1. Ensure that the power supply is stopped and the workpiece is removed before starting maintenance work or replacement of the product.

- Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months $/ 250 \mathrm{~km} / 5$ million cycles*	\bigcirc	\bigcirc

* Select whichever comes sooner.
- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky
f. Crack on the back of the belt

Electric Actuators

MMECHATROLINK Compatible AC Servo Motor Driver
Absolute Type Series LECYM

HMMECHATROLINK-II Type

AC Servo Motor Driver

Absolute Type

Series LECYM/LECYU

($\mathrm{M}^{\text {MECHATROLINK-II Type }}$)
(HIMECHATROLINK-III Type)

Dimensions

MMECHATROLNK-II type
 LECYM2-V \square

MMECHATROLNK-III type
LECYU2-V \square

Connector name	Description
CN1	I/O signal connector
CN2	Encoder connector
CN3 Note)	Digital operator connector
CN6A	MECHATROLINK-IIcommunication connector
CN6B	MECHATROLINK-IIcommunication connector
CN7	PC connector
CN8	Safety connector

Note) Digital operator is JUSP-OP05A-1-E manufactured by YASKAWA Electric Corporation. When using the digital operator, it should be provided by the customer.

Motor capacity	Hole position	Mounting dimensions				Mounting hole
		A	B	C	D	
V5 (100 W)	(1)2)	5	-	5	5	$\varnothing 5$
V7 (200 W)	(1)2)	5	-	5	5	
V8 (400 W)	(2)(3)	5	5	5	5	

[^23]| Connector name | Description |
| :--- | :--- |
| CN1 | I/O signal connector |
| CN2 | Encoder connector |
| CN3 Note) | Digital operator connector |
| CN6A | MECHATROLINK-I communication connector |
| CN6B | MECHATROLINK-I communication connector |
| CN7 | PC connector |
| CN8 | Safety connector |

Note) Digital operator is JUSP-OP05A-1-E manufactured by YASKAWA Electric Corporation. When using the digital operator, it should be provided by the customer.

Motor capacity	Hole position	Mounting dimensions				Mounting hole
		A	B	C	D	
V5 (100 W)	(1)(2)	5	-	5	5	Ø 5
V7 (200 W)	(1)2)	5	-	5	5	
V8 (400 W)	(2)(3)	5	5	5	5	

* The mounting hole position varies depending on the motor capacity.

AC Servo Motor Driver Series $L E C Y{ }_{U}^{M}$

Specifications

1/MECHATROLINK-II Type					
Model			LECYM2-V5	LECYM2-V7	LECYM2-V8
Compatible motor capacity [W]			100	200	400
Compatible encoder			Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)		
Main circuit power supply	Power voltage [V]		Three phase 200 to 230 VAC (50/60 Hz)		
	Allowable voltage fluctuation [V]		Three phase 170 to 253 VAC		
Control power supply	Power voltage [V]		Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]		Single phase 170 to 253 VAC		
Power supply capacity (at rated output) [A]			0.91	1.6	2.8
Input circuit			NPN (Sink circuit)/PNP (Source circuit)		
Parallel input (7 inputs)	Number of optional allocations	$\begin{gathered} 7 \\ \text { inputs } \end{gathered}$	[Initial allocation] - Homing deceleration switch (/DEC) - External latch (/EXT 1 to 3) - Forward run prohibited (P-OT), reverse run prohibited (N-OT) [Can be allocated by setting the parameters.] - Forward external torque limit (/P-CL), reverse external torque limit (/N-CL) Signal allocations can be performed, and positive and negative logic can be changed.		
Parallel output (4 outputs)	Number of fixed allocations	1 output	. Servo alarm (ALM)		
	Number of optional allocations		[Initial allocation] - Lock (/BK) [Can be allocated by setting the parameters.] - Positioning completion (/COIN) - Speed limit detection (/VLT) - Speed coincidence detection (/V-CMP) - Rotation detection (/TGON) - Warning (/WARN) - Servo ready (/S-RDY) - Near (/NEAR) - Torque limit detection (/CLT) Signal allocations can be performed, and positive and negative logic can be changed.		
MECHATROLINK communication	Communication protocol		MECHATROLINK-II		
	Station address		41 H to 5FH		
	Communication speed		10 Mbps		
	Communication cycle		$250 \mu \mathrm{~s}, 0.5 \mathrm{~ms}$ to 4 ms (Multiples of 0.5 ms)		
	Number of transmission bytes		17 bytes, 32 bytes		
	Max. number of stations		30		
	Cable length		Overall cable length: 50 m or less, Cable length between the stations: 0.5 m or more		
Command method	Control method		Position, speed, or torque control with MECHATROLINK- II communication		
	Command input		MECHATROLINK- II command (Motion, data setting, monitoring or adjustment)		
Function	Gain adjustment		Tuning-less/Advanced autotuning/One-parameter tuning		
	Communication setting		USB communication, RS-422 communication		
	Torque limit		Internal torque limit, external torque limit, and torque limit by analogue command		
	Encoder output		Phase A, B, Z: Line driver output		
	Emergency stop		CN8 Safety function		
	Overtravel		Dynamic brake stop, deceleration to a stop, or free run to a stop at P-OT or N-OT		
	Alarm		Alarm signal, MECHATROLINK-II command		
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 55 (No freezing)		
Operating humidity range [\%RH]			90 or less (No condensation)		
Storage temperature range [${ }^{\circ} \mathrm{C}$]			-20 to 85 (No freezing)		
Storage humidity range [\%RH]			90 or less (No condensation)		
Insulation resistance [M 2]			$10 \mathrm{M} \Omega$ (500 VDC)		
Weight [g]			900		1000

Specifications

MMECHATROLINK-III Type					
Model			LECYU2-V5	LECYU2-V7	LECYU2-V
Compatible motor capacity [W]			100	200	400
Compatible encoder			Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)		
Main circuit power supply	Power voltage [V]		Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]		Three phase 170 to 253 VAC		
Control power supply	Power voltage [V]		Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]		Single phase 170 to 253 VAC		
Power supply capacity (at rated output) [A]			0.91	1.6	2.8
Input circuit			NPN (Sink circuit)/PNP (Source circuit)		
Parallel input (7 inputs)	Number of optional allocations	$\begin{gathered} 7 \\ \text { inputs } \end{gathered}$	[Initial allocation] - Homing deceleration switch (/DEC) - External latch (/EXT 1 to 3) - Forward run prohibited (P-OT), reverse run prohibited (N-OT) [Can be allocated by setting the parameters.] - Forward external torque limit (/P-CL), reverse external torque limit (/N-CL) Signal allocations can be performed, and positive and negative logic can be changed.		
	Number of fixedallocations	1 output	- Servo alarm (ALM)		
Parallel output (4 outputs)	Number of optional allocations	$\begin{array}{c\|} 3 \\ \text { outputs } \end{array}$	[Initial allocation] - Lock (/BK) [Can be allocated by Positioning comple Speed limit detectio Speed coincidence Rotation detection Warning (/WARN) Servo ready (/S-RD Near (/NEAR) Torque limit detect Signal allocations ca	ers.] d positive and	be changed
MECHATROLINK communication	Communication protocol		MECHATROLINK-III		
	Station address		03H to EFH		
	Communication speed		100 Mbps		
	Communication cycle		$125 \mu \mathrm{~s}, 250 \mu \mathrm{~s}, 500 \mu \mathrm{~s}, 750 \mu \mathrm{~s}, 1 \mathrm{~ms}$ to 4 ms (Multiples of 0.5 ms)		
	Number of transmission bytes		16 bytes, 32 bytes, 48 bytes,		
	Max. number of stations		62		
	Cable length		Cable length between the stations: 0.5 m or more, 75 m or less		
Command method	Control method		Position, speed, or torque control with MECHATROLINK-II communication		
	Command input		MECHATROLINK-III command (Motion, data setting, monitoring or adjustment)		
Function	Gain adjustment		Tuning-less/Advanced autotuning/One-parameter tuning		
	Communication setting		USB communication, RS-422 communication		
	Torque limit		Internal torque limit, external torque limit, and torque limit by analogue command		
	Encoder output		Phase A, B, Z: Line driver output		
	Emergency stop		CN8 Safety function		
	Overtravel		Dynamic brake stop, deceleration to a stop, or free run to a stop at P-OT or N-OT		
	Alarm		Alarm signal, MECHATROLINK-III command		
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 55 (No freezing)		
Operating humidity range [\%RH]			90 or less (No condensation)		
Storage temperature range [${ }^{\circ} \mathrm{C}$]			-20 to 85 (No freezing)		
Storage humidity range [\%RH]			90 or less (No condensation)		
Insulation resistance [M 2]			$10 \mathrm{M} \Omega$ (500 VDC)		
Weight [g]			900		1000

Ac Servo Motor Driver Series $L E C Y_{U}^{M}$

Power Supply Wiring Example: LECY \square

Three phase 200 V LECYM2- \square
LECYU2- \square

* For the LECY $\square 2-\mathrm{V} 5$, LECY $\square 2-\mathrm{V} 7$ and LECY $\square 2-\mathrm{V} 8$, terminals B2 and B3 are not short-circuited.

Do not short-circuit these terminals.

Main Circuit Power Supply Connector * Accessory

Terminal name	Function	Det
L1	Main circuit power supply	Connect the main circuit power supply. Single phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1, L2 Three phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1, L2, L3
L2		
L3		
L1C	Control power supply	Connect the control power supply. Single phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1C, L2C
L2C		
B1/ +	External regenerative resistor connection terminal	When the regenerative resistor is required, connect it between terminals B1 \oplus and B2.
B2		
B3		
$\bigcirc 1$	Main circuit negative terminal	$\Theta 1$ and $\Theta 2$ are connected at shipment.
$\Theta 2$		

Motor Connector * Accessory

Terminal name	Function	
U	Servo motor power (U)	
V	Servo motor power (V)	Connect to motor cable (U, V, W).
W	Servo motor power (W)	

Power Supply Wire Specifications

Item	Specifications
Applicable wire size	L1, L2, L3, L1C, L2C Single wire, Twisted wire, AWG14 $\left(2.0 \mathrm{~mm}^{2}\right)$
Stripped wire length	

Control Signal Wiring Example: LECYM

Note 1) \mathcal{J} shows twisted-pair wires.
Note 2) The 24 VDC power supply is not included. Use a 24 VDC power supply with double insulation or reinforced insulation.
Note 3) When using the safety function, a safety function device must be connected to the wiring that is necessary to activate the safety function. Otherwise, the servo motor is not turned ON. When not using the safety function, use the driver with the Safety Jumper Connector (provided as an accessory) inserted into the CN8.
Note 4) Always use line receivers to receive the output signals.

* The functions allocated to the input signals /DEC, P-OT, N-OT, /EXT1, /EXT2 and /EXT3, and the output signals /SO1, /SO2 and /SO3 can be changed
by setting the parameters.
Note 5) Compatible with the HWBB function (STO function (IEC61800-5-2)).

Note 1) \mathcal{f} shows twisted-pair wires.
Note 2) The 24 VDC power supply is not included. Use a 24 VDC power supply with double insulation or reinforced insulation.
Note 3) When using the safety function, a safety function device must be connected to the wiring that is necessary to activate the safety function. Otherwise, the servo motor is not turned ON. When not using the safety function, use the driver with the Safety Jumper Connector (provided as an accessory) inserted into the CN8.
Note 4) Always use line receivers to receive the output signals.

* The functions allocated to the input signals /DEC, P-OT, N-OT, /EXT1, /EXT2 and /EXT3, and the output signals /SO1, /SO2 and /SO3 can be changed by setting the parameters.
Note 5) Compatible with the HWBB function (STO function (IEC61800-5-2)).

Series LECYU

Options

Motor cable, Motor cable for lock option, Encoder cable (LECYM/LECYU common)

Cable description

Cable typed

S	Standard cable
R	Robotic cable

Cable length (L) [m]

- Direction of connector

$\mathbf{3}$	3
$\mathbf{5}$	5
\mathbf{A}	10
\mathbf{C}	20

LE-CYM- $\square \square$ - \square : Motor cable

LE-CYB- $\square \square \mathrm{A}-\square$: Motor cable for lock option

LE-CYE- $\square \square$ A: Encoder cable

Product no.	\varnothing D
LE-CYE-S $\square \mathbf{A}$	6.5
LE-CYE-R $\square \mathbf{A}$	6.8

Ac Servo Motor Driver Series $L E C Y{ }_{U}^{M}$

Options

I/O connector

LE-CYNA

* LE-CYNA: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
* Conductor size: AWG24 to 30.

I/O cable

* LEC-CSNA-1: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
* Conductor size: AWG24

Wiring
LEC-CSNA-1: Pin no. 1 to 26

Connector pin no.		Pair no. of wire	Insulation colour	Dot mark	$\begin{gathered} \text { Dot } \\ \text { colour } \end{gathered}$
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{4} \end{aligned}$	1	1	Orange	-	Red
	2			\square	Black
	3	2	Light grey	\square	Red
	4			\square	Black
	5	3	White	\square	Red
	6			\square	Black
	7	4	Yellow	\square	Red
	8			\square	Black
	9	5	Pink	\square	Red
	10			\square	Black

Connector pin no.		Pair no. of wire	Insulation colour	Dot mark	$\begin{gathered} \text { Dot } \\ \text { colour } \end{gathered}$
$\frac{0}{\frac{0}{0}}$	11	6	Orange	■	Red
	12			■	Black
	13	7	Light grey	$\square \square$	Red
	14			-	Black
	15	8	White	■	Red
	16			$\square \square$	Black
	17	9	Yellow	■	Red
	18			■	Black
	19	10	Pink	$\square \square$	Red
	20			$\square \square$	Black

Connector pin no.		Pair no. of wire	Insulation colour	Dot mark	Dot colour
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{6} \\ & 4 \end{aligned}$	21	11	Orange	-	Red
	22			- $=$ -	Black
	23	12	Light grey	■■■	Red
	24			- $=$	Black
	25	13	White	$\square \square \square$	Red
	26			$\square \square \square$	Black

Cable O.D. Dimensions/Pin No.

Product no.	Ø D	Product no.	W	H	T	U	Pin no. n
LEC-CSNA-1	11.1	LEC-CSNA-1	39	37.2	12.7	14	14

Series LECY ${ }_{U}^{M}$

Options

MMECHATROLINK cable type

* LEC-CYM- \square is JEPMC-W6002- $\square \square$-E manufactured by YASKAWA CONTROLS CO., LTD.
* LEC-CYU- \square is JEPMC-W6012- $\square \square$-E manufactured by YASKAWA CONTROLS CO., LTD.

WMECHATROLINK-II cable

WMECHATROLINK-II cable

Terminating connector for $\mathbf{M M}^{\text {MECHATROLINK-II }}$

LEC-CYRM

* LEC-CYRM is JEPMC-W6022-E manufactured by YASKAWA CONTROLS CO., LTD.

AC Servo Motor Driver Series $L E C Y{ }_{U}^{M}$

Options

Setup software（SigmaWin $+^{\text {TM }}$ ）（LECYM／LECYU common）

＊Please download the SigmaWin $+{ }^{\text {TM }}$ via our website．
SigmaWin $+^{\text {TM }}$ is a registered trademark or trademark of YASKAWA Electric Corporation．
Adjustment，waveform display，diagnostics，parameter read／write，and test operation can be performed upon a PC． Compatible PC
When using setup software（SigmaWin $+^{\top M}$ ），use an IBM PC／AT compatible PC that meets the following operating conditions．
Hardware Requirements

Equipment		Setup software（SigmaWin ${ }^{\text {TM }}$ ）
Note 1）2）3）4） PC	OS	Windows ${ }^{\circledR}$ XP Note ${ }^{5}$ ，Windows Vista ${ }^{\circledR}$ ，Windows ${ }^{\circledR} 7$（32－bit／64－bit）
	Available HD space	350 MB or more（When the software is installed， 400 MB or more is recommended．）
	Communication interface	Use USB port．
Display		XVGA monitor（ 1024×768 or more，＂The small font is used．＂） 256 colour or more（ 65536 colour or more is recommended．） The connectable with the above PC
Keyboard		The connectable with the above PC
Mouse		The connectable with the above PC
Printer		The connectable with the above PC
USB cable		LEC－JZ－CVUSB Note 6）
Other		Adobe Reader Ver． 5.0 or higher（＊Except Ver．6．0）

Note 1）Windows，Windows Vista ${ }^{\circledR}$ ，Windows ${ }^{\circledR} 7$ are registered trademarks of Microsoft Corporation in the United States and／or other countries．
Note 2）On some PCs，this software may not run properly．
Note 3）Not compatible with 64－bit Windows ${ }^{\circledR}$ XP and 64 －bit Windows Vista ${ }^{\circledR}$ ．
Note 4）For Windows ${ }^{\circledR}$ XP，please use it by the administrator authority（When installing and using it．）．
Note 5）In PC that uses the program to correct the problem of HotfixQ328310，it is likely to fail in the installation．In that case，please use the program to correct the problem of HotfixQ329623．
Note 6）Order USB cable separately．

Battery（LECYM／LECYU common）
 LEC－JZ－CVBAT

＊JZSP－BA01 manufactured by YASKAWA CONTROLS CO．，LTD．
Battery for replacement．
Absolute position data is maintained by installing the battery to the battery case of the encoder cable．

USB cable（ 2.5 m ）
 LEC－JZ－CVUSB

＊JZSP－CVS06－02－E manufactured by YASKAWA CONTROLS CO．，LTD． Cable for connecting PC and driver when using the setup software（SigmaWin＋${ }^{\mathrm{TM}}$ ）．
Do not use any cable other than this cable．

Cable for safety function device（3 m）
 LEC－JZ－CVSAF

＊JZSP－CVH03－03－E manufactured by YASKAWA CONTROLS CO．，LTD． Cable for connecting the driver and device when using the safety function．
Do not use any cable other than this cable．

Series LECYM/LECYU
 AC Servo Motor Driver/ Specific Product Precautions 1

\triangle
Be sure to read this before handling. For Safety Instructions and Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smc.eu

Design/Selection

. Warning

1. Use the specified voltage.

If the applied voltage is higher than the specified voltage, malfunction and damage to the driver may result. If the applied voltage is lower than the specified voltage, there is a possibility that the load cannot be moved due to internal voltage drop. Check the operating voltage prior to start. Also, confirm that the operating voltage does not drop below the specified voltage during operation.
2. Do not use the products outside the specifications.

Otherwise, fire, malfunction or damage to the driver/actuator can result. Check the specifications before use.
3. Install an emergency stop circuit.

Install an emergency stop outside the enclosure in easy reach to the operator so that the operator can stop the system operation immediately and intercept the power supply.
4. To prevent danger and damage due to a breakdown or malfunction of these products, which may occur at a certain probability, a backup system should be arranged in advance by using a multiple-layered structure or by making a fail-safe equipment design etc.
5. If there is a risk of fire or personal injury due to abnormal heat generation, sparking, smoke generated by the product, etc., cut off the power supply from this product and the system immediately.

Handling

© Warning

1. Never touch the inside of the driver and its peripheral devices.
Otherwise, electric shock or failure can result.
2. Do not operate or set up this equipment with wet hands. Otherwise, electric shock can result.
3. Do not use a product that is damaged or missing any components.
Electric shock, fire or injury can result.
4. Use only the specified combination between the electric actuator and driver.
Otherwise, it may cause damage to the driver or to the other equipment.
5. Be careful not to touch, get caught or hit by the workpiece while the actuator is moving.
An injury can result.
6. Do not connect the power supply or power up the product until it is confirmed that the workpiece can be moved safely within the area that can be reached by the workpiece.
Otherwise, the movement of the workpiece may cause an accident.
7. Do not touch the product when it is energised and for some time after the power has been disconnected, as it is very hot.
Otherwise, it may cause burns due to the high temperature.
8. Check the voltage using a tester at least 5 minutes after power-off when performing installation, wiring and maintenance.
Otherwise, electric shock, fire or injury can result.

Handling

\triangle Warning

9. Static electricity may cause a malfunction or damage the driver. Do not touch the driver while power is supplied to it.
Take sufficient safety measures to eliminate static electricity when it is necessary to touch the driver for maintenance.
10. Do not use the products in an area where they could be exposed to dust, metallic powder, machining chips or splashes of water, oil or chemicals.
Otherwise, a failure or malfunction can result.
11. Do not use the products in a magnetic field.

Otherwise, a malfunction or failure can result.
12. Do not use the products in an environment where flammable, explosive or corrosive gases, liquids or other substances are present.
Otherwise, fire, explosion or corrosion can result.
13. Avoid heat radiation from strong heat sources, such as direct sunlight or a hot furnace.
Otherwise, it will cause a failure to the driver or its peripheral devices.
14. Do not use the products in an environment with cyclic temperature changes.
Otherwise, it will cause a failure to the driver or its peripheral devices.
15. Do not use the products in an environment where surges are generated.
Devices (solenoid type lifters, high frequency induction furnaces, motors, etc.) that generate a large amount of surge around the product may lead to deterioration or damage to the internal circuits of the products. Avoid supplies of surge generation and crossed lines.
16. Do not install these products in a place subject to vibration and impact.
Otherwise, a malfunction or failure can result.
17. When a surge generating load such as a relay or solenoid valve is directly driven, use a product that incorporates a surge absorption element.

Mounting

\triangle Warning

1. Install the driver and its peripheral devices on fireproof material.
Direct installation on or near flammable material may cause fire.
2. Do not install these products in a place subject to vibration and impact.
Otherwise, a malfunction or failure can result.
3. The driver should be mounted on a vertical wall in a vertical direction.
Also, do not cover the driver's suction/exhaust ports.
4. Install the driver and its peripheral devices on a flat surface.
If the mounting surface is not flat or uneven, excessive force may be applied to the housing and other parts resulting in a malfunction.

Series LECYM/LECYU
 AC Servo Motor Driver/ Specific Product Precautions 2

\triangle
Be sure to read this before handling. For Safety Instructions and Electric Actuator Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smc.eu

Power Supply

\triangle Caution

1. Use a power supply with low noise between lines and between power and ground.
In cases where noise is high, use an isolation transformer.
2. Take appropriate measures to prevent surges from lightning. Ground the surge absorber for lightning separately from the grounding of the driver and its peripheral devices.

Wiring

© Warning

1. The driver will be damaged if a commercial power supply ($100 \mathrm{~V} / 200 \mathrm{~V}$) is added to the driver's servo motor power (U, V, W). Be sure to check wiring such as wiring mistakes when the power supply is turned on.
2. Connect the ends of the U, V, W wires from the motor cable correctly to the phases ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) of the servo motor power. If these wires do not match up, it is unable to control the servo motor.

Grounding

\triangle Warning

1. For grounding actuator, connect the copper wire of the actuator to the driver's protective earth (PE) terminal and connect the copper wire of the driver to the earth via the control panel's protective earth (PE) terminal. Do not connect them directly to the control panel's protective earth (PE) terminal.

2. In the unlikely event that malfunction is caused by the ground, it may be disconnected.

Maintenance

© Warning

1. Perform maintenance checks periodically.

Confirm wiring and screws are not loose.
Loose screws or wires may cause unexpected malfunction.
2. Conduct an appropriate functional inspection and test after completed maintenance.
In case of any abnormalities (if the actuator does not move or the equipment does not operate properly etc.), stop the operation of the system.
Otherwise, unexpected malfunction may occur and safety cannot be assured.
Conduct a test of the emergency stop to confirm the safety of the equipment.
3. Do not disassemble, modify or repair the driver or its peripheral devices.
4. Do not put anything conductive or flammable inside the driver.
Otherwise, fire can result.
5. Do not conduct an insulation resistance test or insulation withstand voltage test.
6. Reserve sufficient space for maintenance.

Design the system so that it allows required space for maintenance.

These safety instructions are intended to prevent hazardous situations and／or equipment damage．These instructions indicate the level of potential hazard with the labels of＂Caution，＂＂Warning＂or＂Danger．＂They are all important notes for safety and must be followed in addition to International Standards（ISO／IEC）＊1），and other safety regulations．

Caution indicates a hazard with a low level of risk which，if not avoided，could result in minor or moderate injury．
Warning indicates a hazard with a medium level of risk
\triangle Warning：

\triangle Danger：

 which，injury．
Danger indicates a hazard with a high level of risk which，if not avoided，will result in death or serious injury．II

© Warning

1．The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications．
Since the product specified here is used under various operating conditions，its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results． The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product．This person should also continuously review all specifications of the product referring to its latest catalogue information，with a view to giving due consideration to any possibility of equipment failure when configuring the equipment．
2．Only personnel with appropriate training should operate machinery and equipment．
The product specified here may become unsafe if handled incorrectly．The assembly， operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced．
3．Do not service or attempt to remove product and machinery／equipment until safety is confirmed．
1．The inspection and maintenance of machinery／equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed．
2．When the product is to be removed，confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut，and read and understand the specific product precautions of all relevant products carefully．
3．Before machinery／equipment is restarted，take measures to prevent unexpected operation and malfunction．
4．Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions．
1．Conditions and environments outside of the given specifications，or use outdoors or in a place exposed to direct sunlight．
2．Installation on equipment in conjunction with atomic energy，railways，air navigation， space，shipping，vehicles，military，medical treatment，combustion and recreation，or equipment in contact with food and beverages，emergency stop circuits，clutch and brake circuits in press applications，safety equipment or other applications unsuitable for the standard specifications described in the product catalogue．
3．An application which could have negative effects on people，property，or animals requiring special safety analysis．
4．Use in an interlock circuit，which requires the provision of double interlock for possible failure by using a mechanical protective function，and periodical checks to confirm proper operation．

\triangle Caution

1．The product is provided for use in manufacturing industries．
The product herein described is basically provided for peaceful use in manufacturing industries．
If considering using the product in other industries，consult SMC beforehand and exchange specifications or a contract if necessary．
If anything is unclear，contact your nearest sales branch．
＊1）ISO 4414：Pneumatic fluid power－General rules relating to systems．
ISO 4413：Hydraulic fluid power－General rules relating to systems．
IEC 60204－1：Safety of machinery－Electrical equipment of machines．
（Part 1：General requirements）
ISO 10218－1：Manipulating industrial robots－Safety． etc．

Limited warranty and Disclaimer／ Compliance Requirements

The product used is subject to the following＂Limited warranty and Disclaimer＂and＂Compliance Requirements＂．
Read and accept them before using the product．

Limited warranty and Disclaimer

1．The warranty period of the product is 1 year in service or 1.5 years after the product is delivered，wichever is first．＊2） Also，the product may have specified durability，running distance or replacement parts．Please consult your nearest sales branch．
2．For any failure or damage reported within the warranty period which is clearly our responsibility，a replacement product or necessary parts will be provided． This limited warranty applies only to our product independently，and not to any other damage incurred due to the failure of the product．
3．Prior to using SMC products，please read and understand the warranty terms and disclaimers noted in the specified catalogue for the particular products．
＊2）Vacuum pads are excluded from this 1 year warranty．
A vacuum pad is a consumable part，so it is warranted for a year after it is delivered．
Also，even within the warranty period，the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty．

Compliance Requirements

1．The use of SMC products with production equipment for the manufacture of weapons of mass destruction（WMD）or any other weapon is strictly prohibited．
2．The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction．Prior to the shipment of a SMC product to another country，assure that all local rules governing that export are known and followed．

\triangle Caution

SMC products are not intended for use as instruments for legal metrology．
Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology（measurement）laws of each country． Therefore，SMC products cannot be used for business or certification ordained by the metrology（measurement）laws of each country．

SMC Corporation（Europe）

Austria	宫＋43（0）2262622800	www．smc．at	office＠smc．at	Lithuania	盆＋37052308118	www．smcli．lt	info＠smclt．lt
Belgium	\％	www．smc．be	info＠smc．be	Netherlands	益＋31（0）205318888	www．smc．nl	info＠smc．nl
Bulgaria	\％	www．smc．bg	office＠smc．bg	Norway	皿＋4767129020	www．smc－norge．no	post＠smc－norge．no
Croatia	宮＋385（0）13707288	www．smc．hr	office＠smc．hr	Poland	요＋ 48222119600	www．smc．pl	office＠smc．pl
Czech Republic	요․ +420541424611	www．smc．cz	office＠smc．cz	Portugal	\％ － 351226166570	www．smc．eu	postpt＠smc．smces．es
Denmark	皿＋4570252900	www．smcdk．com	smc＠smcdk．com	Romania	요․ +40213205111	www．smcromania．ro	smcromania＠smcromania．ro
Estonia	皿＋3726510370	www．smcpneumatics．ee	smc＠smcpneumatics．ee	Russia	용＋78127185445	www．smc－pneumatik．ru	info＠smc－pneumatik．ru
Finland	\％	www．smc．fi	smcti＠smc．fi	Slovakia	益＋421（0）413213212	www．smc．sk	office＠smc．sk
France	皿＋33（0）164761000	www．smc－france．fr	info＠smc－france．fr	Slovenia	皿＋386（0）73885412	www．smc．si	office＠smc．si
Germany	\％ $\mathbf{-}$＋49（0）61034020	www．smc．de	info＠smc．de	Spain	요＋+34945184100	www．smc．eu	post＠smc．smces．es
Greece	\％ m ＋30 2102717265	www．smchellas．gr	sales＠smchellas．gr	Sweden	曾＋46（0）86031200	www．smc．nu	post＠smc．nu
Hungary	容 +3623513000	www．smc．hu	office＠smc．hu	Switzerland	요－41（0）523963131	www．smc．ch	info＠smc．ch
Ireland	宮 +353 （0）14039000	www．smcpneumatics．ie	sales＠smcpneumatics．ie	Turkey	\％+902124890440	www．smcpnomatik．com．tr	info＠smcpnomatik．com．tr
Italy	요․ +390292711	www．smcitalia．it	mailbox＠smcitalia．it	UK	益＋44（0）845 1215122	www．smc．uk	sales＠smc．uk
Latvia	을 37167817700	www．smc．lv	info＠smc．lv				

SMC CORPORATION Akihabara UDX 15F，4－14－1，Sotokanda，Chiyoda－ku，Tokyo 101－0021，JAPAN Phone：03－5207－8249 FAX：03－5298－5362

[^0]: * The LECSS2-T \square cannot be used with the LEC-MR-SETUP221 \square.

[^1]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^2]: * Apply grease on the piston rod periodically.

 Grease should be applied at 1 million cycles or 200 km , whichever comes sooner.

[^3]: For the rod end male thread, refer to page 22. For the mounting bracket dimensions, refer to page 26.

[^4]: * The limit of vertical load mass varies depending on "lead" and "speed". Check "Speed-Vertical Work Load Graph" on page 42.

[^5]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^6]: * Two body mounting screws are included with the support block.
 * The through holes of the LEYG-S032 cannot be used. Use taps on the bottom.

[^7]: * When the actuator is in the positioning range in the pushing operation, it does

[^8]: * "*ALARM" is expressed as negative-logic circuit.

[^9]: Trademark DeviceNet ${ }^{\text {TM }}$ is a trademark of ODVA. EtherNet/IPTM is a trademark of ODVA.

[^10]: * "*ALARM" is expressed as negative-logic circuit.

[^11]: * Refer to the LECPA series Operation Manual for installation.

[^12]: When selecting an electric actuator, refer to the model selection chart of each actuator. Also, for the "Speed-Work Load" graph of the actuator, refer to the LECP6 section on the model selection page of the electric actuators Web Catalogue.

[^13]: *1 Performs a circular operation on a plane using Axis 1 and Axis 2
 *2 This controls the speed of the slave axis when the speed of the main axis drops due to the effects of an external force and when a speed difference with the slave axis occurs. This control is not for synchronising the position of the main axis and slave axis.

[^14]: *1 The connected actuators should be ordered separately. (Refer to the applicable actuators on page 116.)

[^15]: Note) Please consult with SMC for non-standard strokes as they are produced as special orders.

[^16]: * Apply grease on the piston rod periodically.

 Grease should be applied at 1 million cycles or 200 km , whichever comes first.

[^17]: * For auto switches, refer to page 36.

[^18]: * Consult with SMC for non-standard strokes as they are produced as special orders.

[^19]: * Copper and zinc materials are used for the motors, cables, controllers/drivers.

[^20]: * Please consult with SMC for the manufacture of intermediate strokes.

[^21]: * Please consult with SMC for the manufacture of intermediate strokes.

[^22]: * Two body mounting bolts are included with the support block.

[^23]: * The mounting hole position varies depending on
 the motor capacity.

