With drop prevention function

(Self-lock mechanism is provided for all series.) Gripping force of the workpieces is maintained when stopped or restarted. The workpieces can be removed with manual override.

- Compact body sizes and long stroke variations Gripping force equivalent to the widely used air grippers is available.

Possible to set position, speed and force. (64 points)

- Energy-saving product

Power consumption reduced by self-lock mechanism.

With gripping check function Identify workpieces with different dimensions/detect mounting and removal of the workpieces.

Z Type (2 fingers)

Compact and light, various gripping forces

Size	Stroke/ both sides [mm]	Gripping force [N]	
		Basic	Compact
10	4	6 to 14	2 to 6
16	6		3 to 8
20	10	16 to 40	11 to 28
25	14		
32	22	52 to 130	-
40	30	84 to 210	-

F Type (2 fingers)

Can hold various types of workpieces with a long stroke.

Series $L E H F$		
Size	Stroke/ both sides $[\mathrm{mm}]$	Gripping force $[\mathrm{N}]$
$\mathbf{1 0}$	$16(32)$	3 to 7
$\mathbf{2 0}$	$24(48)$	11 to 28
$\mathbf{3 2}$	$32(64)$	48 to 120
$\mathbf{4 0}$	$40(80)$	72 to 180

(): Long stroke

ZJ Type (2 fingers)

With dust cover (Equivalent to IP50) 3 types of cover material (Finger portion only)

S Type (3 fingers)

Can hold round workpieces.

	erie	LEHS		
	Size	Stroke/	Gripping	orce [N]
		[mm]	Basic	Compact
	10	4	2.2 to 5.5	1.4 to 3.5
$1-3$	20	6	9 to 22	7 to 17
1 c	32	8	36 to 90	-
	40	12	52 to 130	-

Electric Gripper 2-Finger Type

Series LEHZ/Size: 10, 16, 20, 25, 32, 40
Series LEHZJ/Size: 10, 16, 20, 25
Series LEHF/Size: 10, 20, 32, 40

-Compact and lightweight Various gripping forces

- Sealed-construction dust cover Equivientito ppo)

- Prevents machining chips, dust, etc., from getting inside - Prevents spattering of grease, etc.

-3 types of cover material (Finger portion only)

- Chloroprene rubber (black): Standard
- Fluororubber (black): Option
- Silicone rubber (white): Option

Electric Gripper 3-Finger Type

Series LEHS/Size: 10, 20, 32, 40

Can hold various types of workpieces with a long stroke.

-Can hold round workpieces.
$\underset{\text { Weight: } 18 \mathrm{EHS} 10)}{ } \mathrm{g}$

| $\begin{array}{l}\text { Manual override } \\ \text { screw }\end{array}$ |
| :--- | :--- |
| $\begin{array}{l}\text { For opening and closing the } \\ \text { fingers (when power supply is }\end{array}$ | fingers (wh

turned off)

Slide screw
Friction resistance reduced by special treatment

<Mounting Variations>

Series LEHZ/LEHZJ

A When using the thread on the side of the body

B When using the thread on the mounting plate

C When using the thread on the back of the body

When using the thread on the back of the body

Series LEHS

A When using the thread on the mounting plate

B When using the thread on the back of the body

Application Examples

Gripping of components that are easily deformed or damaged

Speed and gripping force control and positioning

Simple Setting to Use Straight Away Easy Mode for Simple Setting

If you want to use it right away, select "Easy Mode."

<When a TB (teaching box) is used>

- Simple screen without scrolling promotes ease of setting and operating.
- Pick up an icon from the first screen to select a function.
- Set up the step data and check the monitor on the second screen.

Teaching box screen

- Data can be set with position and speed. (Other conditions are already set.)

Example of setting the step data

It can be registered by "SET" after entering the values.

Example of checking the operation status

Operation status can be checked.

© Normal Mode for Detailed Setting

Select normal mode when detailed setting is required.

- Step data can be set in detail.
- Parameters can be set.
- Signals and terminal status can be monitored. JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.
<When a PC is used> Controller setting software
- Step data setting, parameter setting, monitor, teaching, etc., are indicated in different windows.

The actuator and controller are provided as a set. (They can be ordered separately.)
Confirm that the combination of the controller and the actuator is correct.

<Check the following before use.>

(1) Check the actuator labell for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

Fieldbus Network

Fieldbus-compatible Gateway (GW) Unit

Series LEC-G

© Conversion unit for Fieldbus network and LEC serial communication

© Two methods of operation

Step data input: Operate using preset step data in the controller.
Numerical data input: The actuator operates using values such as position and speed from the PLC.Values such as position, speed can be checked on the PLC.

Programless Type series LECP1

No Programming

Capable of setting up an electric actuator operation without using a PC or teaching box

Pulse Input Type series LECPA

A driver that uses pulse signals to allow positioning at any position. The actuator can be controlled from the customers' positioning unit.

Step motor driver (Pulse input type)
Series LECPA

Return-to-origin command signal

Enables automatic return-to-origin action.
With force limit function (Pushing force/Gripping force operation available)
Pushing force/Positioning operation possible by switching signals.

Function

Item	Step data input type LECP6	Programless type LECP1	Pulse input type LECPA
Step data and parameter setting	- Input from controller setting software (PC) - Input from teaching box	- Select using controller operation buttons	- Input from controller setting software (PC) - Input from teaching box
Step data "position" setting	- Input the numerical value from controller setting software (PC) or teaching box - Input the numerical value - Direct teaching - JOG teaching	- Direct teaching - JOG teaching	- No "Position" setting required Position and speed set by pulse signal
Number of step data	64 points	14 points	-
Operation command (IVO signal)	Step No. [IN*] input \Rightarrow [DRIVE] input	Step No. [IN*] input only	Pulse signal
Completion signal	[INP] output	[OUT*] output	[INP] output

Setting Items

	Item	Contents	Easy mode		Normal mode	Step data input type LECP6	Pulse input type LECPA	Programless type LECP1*
			TB	PC	TB•PC			
Step data setting (Excerpt)	Movement MOD	Selection of "absolite position" and "reative position"	\triangle	-	-	Set at ABS/INC	No setting required	Fixed value (ABS)
	Speed	Transfer speed	-	-	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$		Select from 16-level
	Position	[Position]: Target position [Pushing]: Pushing start position	\bigcirc	-	\bigcirc	Set in units of 0.01 mm		Direct teaching JOG teaching
	Acceleration/Deceleration	Acceleration/deceleration during movement	\bigcirc	\bigcirc	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$		Select from 16-level
	Pushing force	Rate of force during pushing operation	-	-	-	Set in units of 1%	Set in units of 1%	Select trom 3-level (weak, medium, strong)
	Trigger LV	Target force during pushing operation	\triangle	-	-	Set in units of 1%	Set in units of 1%	No setingrequired (same vave as pussing force)
	Pushing speed	Speed during pushing operation	\triangle	-	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	No setting required
	Moving force	Force during positioning operation	\triangle	-	-	Set to 100%	Setto (Difiterent values for each actuator) \%	
	Area output	Conditions for area output signal to turn ON	\triangle	-	-	Set in units of 0.01 mm	Set in units of 0.01 mm	
	In position	[Position]: Width to the target position [Pushing: How much it moves during pushing	\triangle	-	\bigcirc	Set to 0.5 mm or more (Units: 0.01 mm)	Set to (Different values for each actuator) or more (Units: 0.01 mm)	
Parameter setting (Excerpt)	Stroke (+)	+ side limit of position	\times	\times	-	Set in units of 0.01 mm	Set in units of 0.01 mm	
	Stroke (-)	- side limit of position	\times	\times	-	Set in units of 0.01 mm	Set in units of 0.01 mm	
	ORIG direction	Direction of the return to origin can be set.	\times	\times	-	Compatible	Compatible	Compatible
	ORIG speed	Speed during return to origin	\times	\times	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	
	ORIG ACC	Acceleration during return to origin	\times	\times	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	No setting requir
Test	JOG		-	-	\bigcirc	Continuous operation at the set speed can be tested while the switch is being pressed.	Continuous operation at the set speed can be tested while the switch is being pressed.	Hold down MANUAL button (®®) for uniform sending (speed is specified value)
	MOVE		\times	-	\bigcirc	Operation at the set distance and speed from the current position can be tested.	Operation at the set distance and speed from the current position can be tested.	Press MANUAL button ($\odot()$ once for sizing operation (speed, sizing amount are specified values)
	Return to ORIG		-	-	-	Compatible	Compatible	Compatible
	Test drive	Operation of the specified step data	-	-	(Continuous operation	Compatible	Not compatible	Compatible
	Forced output	ONOFF of the output terminal can be tested.	\times	\times	\bigcirc	Compatible	Compatible	Not compatible
Monitor	DRV mon	Current position, speed, force and the specified step data can be monitored.	-	-	\bigcirc	Compatible	Compatible	
	In/Out mon	Current ON/OFF status of the input and output terminal can be monitored.	\times	\times	\bigcirc	Compatible	Compatible	
ALM	Status	Alarm currently being generated can be confirmed.	\bigcirc	\bigcirc	-	Compatible	Compatible	Compatible (display alarm group)
	ALM Log record	Alarm generated in the past can be confirmed.	\times	\times	-	Compatible	Compatible	Not compatible
File	Save/Load	Step data and parameter can be saved, forwarded and deleted.	\times	\times	\bigcirc	Compatible	Compatible	
Other	Language	Can be changed to Japanese or English.	-	\bigcirc	-	Compatible	Compatible	

Δ : Can be set from TB Ver. 2.** (The version information is displayed on the initial screen)

* Programless type LECP1 cannot be used with the teaching box and controller setting kit.

System Construction/General Purpose I/O

System Construction/Pulse Signal

System Construction/Fieldbus Network

SMC Electric Actuators

Guide Rod Slider Step Motor (Servo/24 VDC)

Controllers/Driver

MECHATROLINK II Type
Series LECYM
MIMECHATROLINK- II

MECHATROLINKIII Type

Series LECYU

IIM MECHATROLINK-III

SSCNETII/H Type

 Series LECSS-T\qquad

Electric Gripper 2-Finger Type Series LEHZ/LEHZJ/LEHF

Electric Gripper 3-Finger Type Series LEHS

Controller/Driver LEC

Step Motor (Servo/24 vDC) Type

© Electric Gripper 2-Finger Type Series LEHZModel SelectionPage 1How to Order Page 7
Specifications Page 9
Construction Page 10
Dimensions Page 11
Finger Options Page 14
© Electric Gripper 2-Finger Type/With Dust Cover Series LEHZJ
Model Selection Page 15
How to Order Page 21
Specifications Page 23
Construction Page 24
Dimensions Page 25
© Electric Gripper 2-Finger Type Series LEHF
Model Selection Page 27
How to Order Page 31
Specifications Page 33
Construction Page 34
Dimensions Page 35
© Electric Gripper 3-Finger Type Series LEHS
Model Selection Page 40
How to Order Page 43
Specifications Page 45
Construction Page 46
Dimensions Page 47
Specific Product Precautions Page 49
© Step Motor (Servo/24 vDC) Controller/DriverStep Data Input Type/series LECP6Page 55
Controller Setting Kit/LEC-W2 Page 62
Teaching Box/LEC-T1 Page 63
Gateway Unit/Series LEC-G Page 65
Programless Controller/Series LECP1 Page 68
Step Motor Driver/Series LECPA Page 75
Controller Setting Kit/LEC-W2 Page 82
Teaching Box/LEC-T1 Page 83
Direct Input Type Controller/Series JXC $\square 1$ Page 86Multi-Axis Step Motor Controller/Series JXC73/83/92/93Page 96

Electric Gripper 2-Finger Type Step Motor (Servo/24 vDC) Series LEHZ
Model Selection

Selection Procedure

Step 1 Check the gripping force.

Check the
conditions.
:---:
required gripping force.
:---:
gripping force graph.
:---:
pushing speed.

Example

Workpiece mass: 0.1 kg required gripping force.

Sect the model from gripping force graph.

Select the pushing speed.

Pushing force: 70 \%

Pushing force is one of the values of step data that is input into the controller.
Gripping point distance: 30 mm

Pushing speed: $30 \mathrm{~mm} / \mathrm{sec}$

Calculation of required gripping force

"Gripping force at least 10 to 20 times the workpiece weight"

- The "10 to 20 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" $=4$, which allows for impacts that occur during normal transportation, etc.

When $\mu=0.2$	When $\mu=0.1$
$\mathbf{F}=\frac{\mathbf{m g}}{2 \times 0.2} \times 4=10 \times \mathrm{mg}$	$\mathbf{F}=\frac{\mathrm{mg}}{2 \times 0.1} \times 4=20 \times \mathbf{4 g}$
$10 \times$ Workpiece weight	$20 \times$ Workpiece weight

When the LEHZ20 is selected.

- A gripping force of 27 N is obtained from the intersection point of gripping point distance $L=30$ mm and pushing force of 70%.
- Gripping force is 27.6 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

- Pushing speed is satisfied at the point where 70% of the pushing force and $30 \mathrm{~mm} / \mathrm{sec}$ of the pushing speed cross.

Note) Confirm the pushing speed range from the determined pushing force [\%].
<Reference> Coefficient of friction μ (depends on the operating environment, contact pressure, etc.)

Coefficient of friction μ	Attachment - Material of workpieces (guideline)
0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.

Note) • Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.
If high acceleration or impact forces are encountered during motion, a further margin should be considered.

Step Motor (Servo/24 VDC)

Selection Procedure

Step 1 Check the gripping force: Series LEHZ

- Indication of gripping force

The gripping force shown in the graphs below is expressed as " F ", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

External Gripping State

Basic

* Pushing force is one of the values of step data that is input into the controller.

LEHZ10

LEHZ16

- Set the workpiece gripping point "L" so that it is within the range
shown in the figure below.

Internal Gripping State

Compact

* Pushing force is one of the values of

LEHZ10L

LEHZ16L

Series LEHZ

Step Motor (Servo/24 VDC)

Selection Procedure

Step 1 Check the gripping force: Series LEHZ
$\begin{array}{ll} & * \text { Pushing force is one of the values of } \\ \text { Basic } & \text { step data that is input into the controller. }\end{array}$
LEHZ20

LEHZ25

Compact
LEHZ20L

LEHZ25L

Selection of Pushing Speed

- Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.

Basic

Compact

Step 2 Check the gripping point and overhang: Series LEHZ

- Decide the gripping position of the workpiece so that the amount of overhang " H " stays within the range shown in the figure below.
- If the gripping position is out of the limit, it may shorten the life of the electric gripper.

* Pushing force is one of the values of

LEHZ16

LEHZ20

Internal Gripping State

Compact

* Pushing force is one of the values of step data that is input into the controller.

LEHZ10L

LEHZ16L

LEHZ20L

Series LEHZ

Step Motor (Servo/24 VDC)

Selection Procedure

Step 2 Check the gripping point and overhang: Series LEHZ

Basic \quad * Pushing force is one of the values of \quad step data that is input into the controller.
LEHZ25

* Pushing force is one of the values of Compact step data that is input into the controller.

LEHZ25L

LEHZ32

LEHZ40

Step 3 Check the external force on fingers: Series LEHZ

Fv: Allowable vertical load

Mp: Pitch moment

My: Yaw moment

Mr: Roll moment
H, L : Distance to the point at which the load is applied [mm]

Model	Allowable vertical load Fv [N]	Static allowable moment		
		Pitch moment: Mp [N•m]	Yaw moment: My [N•m]	Roll moment: Mr [N•m]
LEHZ10(L)K2-4	58	0.26	0.26	0.53
LEHZ16(L)K2-6	98	0.68	0.68	1.36
LEHZ20(L)K2-10	147	1.32	1.32	2.65
LEHZ25(L)K2-14	255	1.94	1.94	3.88
LEHZ32(L)K2-22	343	3	3	6
LEHZ40(L)K2-30	490	4.5	4.5	9

Note) Values for load in the table indicate static values.

Calculation of allowable external force (when moment load is applied)	Calculation example
$\text { Allowable load } \mathbf{F}(\mathbf{N})=\frac{\mathbf{M} \text { (Static allowable moment) }[\mathrm{N} \cdot \mathrm{~m}]}{\mathbf{L} \times 10^{-3} *}$	When a static load of $f=10 \mathrm{~N}$ is operating, which applies pitch moment to point $\mathrm{L}=30 \mathrm{~mm}$ from the LEHZ16K2-6 guide. Therefore, it can be used. $\begin{aligned} \text { Allowable load } F & =\frac{0.68}{30 \times 10^{-3}} \\ & =22.7(\mathrm{~N}) \\ \text { Load } \mathrm{f}=10(\mathrm{~N})< & 22.7(\mathrm{~N}) \end{aligned}$

Electric Gripper 2-Finger Type

Step Motor (Servo/24 VDC)

Series LEHz $\subset \in$ s.s. LEHZ10, 16, 20, 25, 32, 40

How to Order

1 Size
10
16
20
25
32
40

2 Motor size
- Basic L Note) Compact Note) Size: 10,

$\mathbf{5}$ Stroke $[\mathrm{mm}]$
Stroke/both sides
$\mathbf{4}$
$\mathbf{6}$
$\mathbf{1 0}$
$\mathbf{1 4}$
$\mathbf{2 2}$
$\mathbf{3 0}$

6 Finger options

-	Basic (Tapped in opening/closing direction)
A	Side tapped mounting
B	Through-hole in opening/closing direction
C	Flat fingers

(4) 2-finger type

Finger options

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEH series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.
Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

Refer to the operation manual for using the products. Please download it via our website, http://www.smc.eu

[^0]

Actuator cable type*1

-	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)*2

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2 Fix the motor cable protruding from the actuator to keep it unmovable. For details about fixing method, refer to Wiring/Cables in the Electric Actuators Precautions.

11 I/O cable length [m]**

-	Without cable
1	1.5
3	$3^{* 2}$
5	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 61 (For LECP6), page 74 (For LECP1) or page 81 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.
(9) Actuator cable length [m]

-	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
\mathbf{A}	10^{*}
\mathbf{B}	15^{*}
\mathbf{C}	20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 9.

12 Controller/Driver mounting

-	Screw mounting
\mathbf{D}	DIN rail mounting*

* DIN rail is not included. Order it separately. (Refer to page 56.)
10 Controller/Driver type*

-	Without controller/driver	
6N	LECP6	NPN
6P	(Step data input type)	PNP
1N	LECP1	NPN
1P	(Programless type)	PNP
AN	LECPA	NPN
AP	(Pulse input type)	PNP

* For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.

Compatible Controllers/Driver

Type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECP1	LECPA
Features	Value (Step data) input Standard controller	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points	14 points	-
Power supply voltage	24 VDC		
Reference page	Page 55	Page 68	Page 75

Specifications

Model			LEHZ10	LEHZ16	LEHZ20	LEHZ25	LEHZ32	LEHZ40
	Opening/closing stroke (Both sides)		4	6	10	14	22	30
	Gripping force [N] Note 1) Note 3)	Basic	6 to 14		16 to 40		52 to 130	84 to 210
		Compact	2 to 6	3 to 8	11 to 28		-	-
	Opening and closing speed/ Pushing speed [mm/s] Note 2) Note 3)		5 to 80/5 to 50		5 to 100/5 to 50		5 to 120/5 to 50	
	Drive method		Slide screw + Slide cam					
	Finger guide type		Linear guide (No circulation)					
	Repeated length measurement accuracy [mm] ${ }^{\text {Woetet }}$		± 0.05					
	Finger backlash/ both sides [mm] Note 5)		0.25 or less				0.5 or less	
	Repeatability [mm] Note 6)		± 0.02					
	Positioning repeatability/one side [mm]		± 0.05					
	Lost motion/one side [mm] Note 7)		0.25 or less				0.3 or less	
	Impact/Vibration resistance [m/s²] ${ }^{\text {Noit } 8)}$		150/30					
	Max. operating frequency [C.P.M]		60					
	Operating temperature range [${ }^{\mathrm{C}}$]		5 to 40					
	Operating humidity range [\%RH]		90 or less (No condensation)					
	Weight [g]	Basic	165	220	430	585	1120	1760
		Compact	135	190	365	520	-	-
Electric specifications	Motor size		$\square 20$		$\square 28$		$\square 42$	
	Motor type		Step motor (Servo/24 VDC)					
	Encoder		Incremental A/B phase (800 pulse/rotation)					
	Rated voltage [V]		24 VDC ± 10 \%					
	Power consumption/ Standby power consumption whenoperating [W] Note 9)	Basic	11/7		28/15		34/13	36/13
		Compact	8/7		22/12		-	-
	Max. instantaneous power consumption [W] Note 10)	Basic	19		51		57	61
		Compact	14		42		-	-

Note 1) Gripping force should be from 10 to 20 times the workpiece weight. Positioning force should be 150% when releasing the workpiece. Gripping force accuracy should be ± 30 \% (F.S.) for LEHZ10/16, $\pm 25 \%$ (F.S.) for LEHZ20/25 and ± 20 \% (F.S.) for LEHZ32/40. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
Note 2) Pushing speed should be set within the range during pushing (gripping) operation. Otherwise, it may cause malfunction. The opening/closing speed and pushing speed are for both fingers. The speed for one finger is half this value.
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 4) Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
Note 5) There will be no influence of backlash during pushing (gripping) operation. Make the stroke longer for the amount of backlash when opening
Note 6) Repeatability means the variation of the gripping position (workpiece position) when the gripping operation is repeatedly performed by the same sequence for the same workpiece.
Note 7) A reference value for correcting an error in reciprocal operation which occurs during the positioning operation.
Note 8) Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Note 9) The power consumption (including the controller) is for when the gripper is operating.
The standby power consumption when operating is for when the gripper is stopped in the set position during operation, including the energy saving mode when gripping.

How to Mount

Note 10) The maximum instantaneous power consumption (including the controller) is for when the gripper is operating. This value can be used for the selection of the power supply.
a) When using the thread on the side of the body

b) When using the thread on the mounting plate

c) When using the thread on the back of the body

Construction
Series LEHZ

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminium alloy	Anodised
2	Motor plate	Aluminium alloy	Anodised
3	Guide ring	Aluminium alloy	
4	Slide nut	Stainless steel	Heat treatment + Special treatment
5	Slide bolt	Stainless steel	Heat treatment + Special treatment
6	Needle roller	High carbon chromium bearing steel	
$\mathbf{7}$	Needle roller	High carbon chromium bearing steel	
8	Finger assembly	-	
9	Lever	Special stainless steel	
$\mathbf{1 0}$	Step motor (Servo/24 VDC)	-	

Replacement Parts (8) Finger Assembly

	Basic (-)	Side tapped mounting (A)	Through-hole in opening/ closing direction (B)	Flat fingers (C)
Size				
10	MHZ-A1002	MHZ-A1002-1	MHZ-A1002-2	MHZ-A1002-3
16	MHZ-A1602	MHZ-A1602-1	MHZ-A1602-2	MHZ-A1602-3
20	MHZ-A2002	MHZ-A2002-1	MHZ-A2002-2	MHZ-A2002-3
25	MHZ-A2502	MHZ-A2502-1	MHZ-A2502-2	MHZ-A2502-3
32	MHZ-A3202	MHZ-A3202-1	MHZ-A3202-2	MHZ-A3202-3
40	MHZ-A4002	MHZ-A4002-1	MHZ-A4002-2	MHZ-A4002-3

Series LEHZ

Step Motor (Servo/24 VDC)

Dimensions

LEHZ10(L)K2-4

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

LEHZ16(L)K2-6

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

Dimensions

LEHZ20(L)K2-10

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

LEHZ25(L)K2-14

	$[\mathrm{mm}]$	
Model	L	$(\mathbf{L} \mathbf{1})$
LEHZ25K2-14 \square	139.8	(61.8)
LEHZ25LK2-14 \square	125.8	(47.8)

Series LEHZ

Step Motor (Servo/24 VDC)

Dimensions

LEHZ32K2-22

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece
mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

Series LEHZ

Finger Options

Side Tapped Mounting (A)

$[\mathrm{mm}]$				
Model	A	B	C	MM
LEHZ10(L)K2-4A \square	3	5.7	2	M2.5 $\times 0.45$
LEHZ16(L)K2-6A \square	4	7	2.5	M3 $\times 0.5$
LEHZ20(L)K2-10A \square	5	9	4	M 4×0.7
LEHZ25(L)K2-14A \square	6	12	5	M 5×0.8
LEHZ32K2-22A \square	7	14	6	M $\square 1$
LEHZ40K2-30A \square	9	17	7	M8 $\times 1.25$

Through-hole in Opening/Closing Direction (B)

Model	A	B	H
LEHZ10(L)K2-4B \square	3	5.7	2.9
LEHZ16(L)K2-6B \square	4	7	3.4
LEHZ20(L)K2-10B \square	5	9	4.5
LEHZ25(L)K2-14B \square	6	12	5.5
LEHZ32K2-22B \square	7	14	6.6
LEHZ40K2-30B \square	9	17	9

Flat Fingers (C)

Model	A	B	C	D	F	G		J	K	MM	L	W	Weight (g)
						When opened	When closed						
LEHZ10K2-4C \square	2.45	6	5.2	10.9	2	$5.4{ }_{-0.2}^{0}$	$1.4{ }_{-0.2}^{0}$	4.45	$2 \mathrm{H} 9+{ }_{0}^{+0.025}$	M2.5 $\times 0.45$	5	$5_{-0.05}^{0}$	165
LEHZ10LK2-4C \square													135
LEHZ16K2-6C \square	3.05	8	8.3	14.1	2.5	$7.4{ }_{-0.2}^{0}$	$1.4{ }_{-0.2}^{0}$	5.8	$2.5 \mathrm{H} 9^{+0.025}$	M3 $\times 0.5$	6	$8{ }_{-0.05}^{0}$	220
LEHZ16LK2-6C \square													190
LEHZ20K2-10C \square	3.95	10	10.5	17.9	3	11.6 ${ }_{-0.2}^{0}$	$1.6{ }_{-0.2}^{0}$	7.45	$3 \mathrm{H} 9+{ }_{0}^{+0.025}$	M4 x 0.7	8	$10_{-0.05}^{0}$	430
LEHZ20LK2-10C \square													365
LEHZ25K2-14C \square	4.9	12	13.1	21.8	4	$16{ }_{-0.2}^{0}$	$2_{-0.2}^{0}$	8.9	$4 \mathrm{H} 9{ }^{+0.030}$	M5 x 0.8	10	$12{ }_{-0.05}^{0}$	575
LEHZ25LK2-14C \square													510
LEHZ32K2-22C \square	7.3	20	18	34.6	5	25-0.2	$3_{-0.2}^{0}$	14.8	$5 \mathrm{H} 9{ }^{+0.030}$	M6 x 1	12	$15_{-0.05}^{0}$	1145
LEHZ40K2-30C \square	8.7	24	22	41.4	6	$33_{-0.2}^{0}$	$3^{-0.2}$	17.7	$6 \mathrm{H9}{ }_{0}^{+0.030}$	M8 $\times 1.25$	16	$18{ }_{-0.05}^{0}$	1820

Selection Procedure

Step 1 Check the of gripping force.

Check the
conditions.
:---:
required gripping force.
:---:
gripping force graph.
:---:
pushing speed.

Example

Workpiece mass: 0.1 kg

Guidelines for the selection of the gripper with respect to workpiece mass

- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times Note) the workpiece weight, or more.
Note) For details, refer to the calculation of required gripping force.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.
Required gripping force
$=0.1 \mathrm{~kg} \times 20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 19.6 \mathrm{~N}$ or more

When the LEHZJ20 is selected.

- A gripping force of 27 N is obtained from the intersection point of gripping point distance $L=30$ mm and pushing force of 70%.
- Gripping force is 27.6 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

- Pushing speed is satisfied at the point where 70% of the pushing force and $30 \mathrm{~mm} / \mathrm{sec}$ of the pushing speed cross.

Note) Confirm the pushing speed range from the determined pushing force [\%].

Calculation of required gripping force

When gripping a workpiece as in the figure to the left, and with the following definitions,

F : Gripping force (N)
μ : Coefficient of friction between the attachments and the workpiece
m : Workpiece mass (kg)
g: Gravitational acceleration ($=9.8 \mathrm{~m} / \mathrm{s}^{2}$) $\mathrm{mg}:$ Workpiece weight (N)
the conditions under which the workpiece will not drop are
$\mathbf{2} \times \mu \mathrm{F}>\mathrm{mg}$
$\stackrel{\overline{4}}{\bar{K}}$

> -Number of fingers
and therefore, $F>\frac{\mathrm{mg}}{2 \times \mu}$
With "a" representing the margin,
" F " is determined by the following formula:

$$
\mathbf{F}=\frac{\mathrm{mg}}{2 \mathbf{x} \mu} \times \mathbf{a}
$$

"Gripping force at least 10 to 20 times the workpiece weight"

- The "10 to 20 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" $=4$, which allows for impacts that occur during normal transportation, etc.

Selection Procedure

Step 1 Check the gripping force: Series LEHZJ

- Indication of gripping force

The gripping force shown in the graphs below is expressed as " F ", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

External Gripping State

Basic

* Pushing force is one of the values of

LEHZJ10

LEHZJ16

- Set the workpiece gripping point " L " so that it is within the range shown in the figure below.

Internal Gripping State

Compact

* Pushing force is one of the values of

LEHZJ10L

LEHZJ16L

Series LEHZJ

Step Motor (Servo/24 VDC)

Selection Procedure

Step 1 Check the gripping force: Series LEHZJ

LEHZJ25

Pushing force is one of the values of step data that is input into the controller.

LEHZJ20L

LEHZJ25L

Selection of Pushing Speed

- Set the [Pushing force] and [Trigger level] within the range shown in the figure below.

Basic

Compact

LEHZJ10L, LEHZJ16L

LEHZJ20L, LEHZJ25L

Step 2 Check the gripping point and overhang：Series LEHZJ

－Decide the gripping position of the workpiece so that the amount of overhang＂H＂stays within the range shown in the figure below．
－If the gripping position is out of the limit，it may shorten the life of the electric gripper．

＊Pushing force is one of the values of
Basic step data that is input into the controller．

LEHZJ10

LEHZJ16

LEHZJ20

Internal Gripping State

Compact
＊Pushing force is one of the values of step data that is input into the controller．

LEHZJ10L

LEHZJ16L

LEHZJ20L

Series LEHZJ

Step Motor (Servo/24 VDC)

Selection Procedure

Step 2 Check the gripping point and overhang: Series LEHZJ
$\begin{array}{ll}\text { Basic } & \text { * Pushing force is one of the values of } \\ \text { step data that is input into the controller. }\end{array}$

LEHZJ25

Compact $\quad \begin{aligned} & \text { P Pushing force is one of the values of } \\ & \text { step data that is input into the controller. }\end{aligned}$

LEHZJ25L

Step 3 Check the external force on fingers: Series LEHZJ

Fv: Allowable vertical load

Mp: Pitch moment

My: Yaw moment

Mr: Roll moment

H, L: Distance to the point at which the load is applied [mm]

Model	Allowable vertical load Fv [N]	Static allowable moment		
		Pitch moment: Mp [N•m]	Yaw moment: My [N•m]	Roll moment: Mr [N•m]
LEHZJ10(L)K2-4	58	0.26	0.26	0.53
LEHZJ16(L)K2-6	98	0.68	0.68	1.36
LEHZJ20(L)K2-10	147	1.32	1.32	2.65
LEHZJ25(L)K2-14	255	1.94	1.94	3.88

Note) Values for load in the table indicate static values.

Calculation of allowable external force (when moment load is applied)	Calculation example
$\text { Allowable load } \mathrm{F}(\mathrm{~N})=\frac{\mathrm{M} \text { (Static allowable moment) }(\mathrm{N} \cdot \mathrm{~m})}{\mathrm{L} \times 10^{-3} *}$	When a static load of $f=10 \mathrm{~N}$ is operating, which applies pitch moment to point $\mathrm{L}=30 \mathrm{~mm}$ from the LEHZJ16K2-6 guide. Therefore, it can be used. $\begin{aligned} \text { Allowable load } \mathrm{F} & =\frac{0.68}{30 \times 10^{-3}} \\ & =22.7(\mathrm{~N}) \\ \text { Load } \mathrm{f}=10(\mathrm{~N})< & 22.7(\mathrm{~N}) \end{aligned}$

Electric Gripper 2-Finger Type/With Dust Cover

Step Motor (Servo/24 VDC)

Series LEHZJ $\subset \in$ s.

 LEHZJ10, 16, 20, 25

Multi-Axis Step Motor Controller Compatible >Page 96
How to Order

\qquad

Motor cable entry

[^1]
The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^2]
Electric Gripper 2-Finger Type/With Dust Cover Series LEHZJ
 Step Motor (Servo/24 VDC)

9 Actuator cable type*1

-	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)*2

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2 Fix the motor cable protruding from the actuator to keep it unmovable. For details about fixing method, refer to Wiring/Cables in the Electric Actuators Precautions.

10 Actuator cable length [m]

-	Without cable
1	1.5
3	3
5	5
8	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 23.

11 Controller/Driver type*

-	Without controller/driver	
6N	LECP6	NPN
6P	(Step data input type)	PNP
1N	LECP1	NPN
1P	(Programless type)	PNP
AN	LECPA	NPN
AP	(Pulse input type)	PNP

* For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.

12 I/O cable length [m]**

-	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 61 (For LECP6), page 74 (For LECP1) or page 81 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.
(13) Controller/Driver mounting

-	Screw mounting
\mathbf{D}	DIN rail mounting*

* DIN rail is not included. Order it separately. (Refer to page 56.)

Compatible Controllers/Driver

Type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECP1	LECPA
Features	Value (Step data) input Standard controller	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points	14 points	-
Power supply voltage	24 VDC		
Reference page	Page 55	Page 68	Page 75

Specifications

Model			LEHZJ10	LEHZJ16	LEHZJ20	LEHZJ25
	Opening/closing stroke (Both sides)		4	6	10	14
	Gripping force [N] Note 1) Note 3)	Basic	6 to 14		16 to 40	
		Compact	3 to 6	4 to 8		28
	Opening and closing speed/Pushing speed [mm/s] Whei)\|Wees)		5 to 80/5 to 50		5 to 100/5 to 50	
	Drive method		Slide screw + Slide cam			
	Finger guide type		Linear guide (No circulation)			
	Repeatability [mm] Note 4)		± 0.02			
	Repeated length measurement accuracy [mm] Note 5)		± 0.05			
	Finger backlash/ both sides [mm] Note 6)		0.25 or less			
	Impact/Vibration resistance [m/s ${ }^{2}$] Note 7)		150/30			
	Max. operating frequency [C.P.M]		60			
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40			
	Operating humidity range [\%RH]		90 or less (No condensation)			
	Weight [g]	Basic	170	230	440	610
		Compact	140	200	375	545
	Motor size		$\square 20$		$\square 28$	
	Motor type		Step motor (Servo/24 VDC)			
	Encoder		Incremental A/B phase (800 pulse/rotation)			
	Rated voltage [V]		24 VDC ± 10 \%			
	Power consumption/ Standby power consumption whenoperating [W] Note 8)	Basic	11/7		28/15	
		Compact	8/7		22/12	
	Max. instantaneous power consumption [W] Note 9)	Basic	19		51	
		Compact	14		42	

Note 1) Gripping force should be from 10 to 20 times the workpiece weight. Positioning force should be 150% when releasing the workpiece. Gripping force accuracy should be ± 30 \% (F.S.) for LEHZ10/16, $\pm 25 \%$ (F.S.) for LEHZ20/25 and ± 20 \% (F.S.) for LEHZ32/40. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
Note 2) Pushing speed should be set within the range during pushing (gripping) operation. Otherwise, it may cause malfunction. The opening/closing speed and pushing speed are for both fingers. The speed for one finger is half this value.
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 4) Repeatability means the variation of the gripping position (workpiece position) when the gripping operation is repeatedly performed by the same sequence for the same workpiece.
Note 5) Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
Note 6) There will be no influence of backlash during pushing (gripping) operation. Make the stroke longer for the amount of backlash when opening.
Note 7) Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Note 8) The power consumption (including the controller) is for when the gripper is operating. The standby power consumption when operating is for when the gripper is stopped in the set position during operation, including the energy saving mode when gripping.
Note 9) The maximum instantaneous power consumption (including the controller) is for when the gripper is operating. This value can be used for the selection of the power supply.

How to Mount

a) When using the thread on the side of the body

Foreign matter protection seal (included)

* Refer to the operation manual for details.

Positioning pin
b) When using the thread on the mounting plate

c) When using the thread on the back of the body

Construction
Series LEHZJ

Component Parts

No.	Description	Material	Note
1	Body	Aluminium alloy	Anodised
2	Motor plate	Aluminium alloy	Anodised
3	Guide ring	Aluminium alloy	
4	Slide nut	Stainless steel	Heat treatment + Special treatment
5	Slide bolt	Stainless steel	Heat treatment + Special treatment
6	Needle roller	High carbon chromium bearing steel	
7	Needle roller	High carbon chromium bearing steel	
8	Body plate	Aluminium alloy	Anodised
9	Dust cover	CR	Chloroprene rubber
		Si	Fluororubber
	Finger assembly	-	Silicone rubber
11	Encoder dust cover	Si	
12	Lever	Special stainless steel	
13	Step motor (Servo/24 VDC)	-	

Replacement Parts

No.	Description		LEHZJ10	LEHZJ16	LEHZJ20	LEHZJ25	
9	$\mathbf{3}$	Dust cover	CR	MHZJ2-J10	MHZJ2-J16	MHZJ2-J20	MHZJ2-J25
			FKM	MHZJ2-J10F	MHZJ2-J16F	MHZJ2-J20F	MHZJ2-J25F
			MHZJ2-J10S	MHZJ2-J16S	MHZJ2-J20S	MHZJ2-J25S	
$\mathbf{1 0}$	Finger assembly		MHZJ-A1002	MHZJ-A1602	MHZJ-A2002	MHZJ-A2502	

[^3]
Series LEHZJ

Step Motor (Servo/24 VDC)

Dimensions

	$[\mathrm{mm}]$	
Model	\mathbf{L}	$(\mathbf{L} 1)$
LEHZJ10K2-4 \square	109.8	(62.7)
LEHZJ10LK2-4 \square	93.2	(46.1)

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

LEHZJ16(L)K2-6

Dimensions
LEHZJ20(L)K2-10

LEHZJ25(L)K2-14

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

Selection Procedure

Check the external force on fingers.

Step 1 Check the gripping force.

Check the
conditions.
:---:
Select the model from
gripping force graph.
:---:
pushing speed.

Example

Workpiece mass: 0.1 kg

Guidelines for the selection of the gripper

 with respect to workpiece mass- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times Note) the workpiece weight, or more.
Note) For details, refer to the model selection illustration.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.
Required gripping force
$=0.1 \mathrm{~kg} \times 20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 19.6 \mathrm{~N}$ or more

LEHF20

When the LEHF20 is selected.

- A gripping force of 26 N is obtained from the intersection point of gripping point distance $L=30$ mm and pushing force of 100%.
- Gripping force is 26.5 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

With " a " representing the margin, " F " is determined by the following formula:

$$
\mathbf{F}=\frac{\mathrm{mg}}{2 \mathbf{x} \mu} \times \mathbf{a}
$$

"Gripping force at least 10 to 20 times the workpiece weight"

- The "10 to 20 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" $=4$, which allows for impacts that occur during normal transportation, etc.

When $\mu=0.2$	When $\mu=0.1$
$\mathbf{F}=\frac{\mathbf{m g}}{2 \times 0.2} \times 4=10 \times \mathrm{mg}$	$\mathbf{F}=\frac{\mathbf{m g}}{2 \times 0.1} \times 4=20 \times \mathbf{~ m g}$
$10 \times$ Workpiece weight	$20 \times$ Workpiece weight

- Pushing speed is satisfied at the point where 100% of the pushing force and $20 \mathrm{~mm} / \mathrm{sec}$ of the pushing speed cross.

Note) Confirm the pushing speed range from the determined pushing force [\%].

Calculation of required gripping force

When gripping a workpiece as in the figure to the left, and with the following definitions,

F: Gripping force [N]
μ : Coefficient of friction between the attachments and the workpiece
m : Workpiece mass [kg]
$\mathrm{g}:$ Gravitational acceleration ($=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
mg : Workpiece weight [N]
the conditions under which the workpiece will not drop are
$\underline{2} \times \mu \mathrm{F}>\mathrm{mg}$
$\overline{\bar{L}}$
-Number of finger
and therefore, $F>\frac{m g}{2 x \mu}$

Selection Procedure

Step 1 Check the gripping force: Series LEHF

- Indication of gripping force

Gripping force shown in the graphs below is expressed as " F ", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

- Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

Internal Gripping State

LEHF10

LEHF40

LEHF20

LEHF32

- Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.

[^4]
Series LEHF

Step Motor (Servo/24 VDC)

Selection Procedure

Step 2 Check the gripping point and overhang: Series LEHF

- Decide the gripping position of the workpiece so that the amount of overhang "H" stays within the range shown in the figure below.
- If the gripping position is out of the limit, it may shorten the life of the electric gripper.

External Gripping State

LEHF10

LEHF32

Internal Gripping State

LEHF20

LEHF40

[^5]Step 3 Check the external force on fingers: Series LEHF

Fv: Allowable vertical load

Mp: Pitch moment

My: Yaw moment

Mr: Roll moment

H, L: Distance to the point at which the load is applied [mm]

Model	Allowable vertical load Fv [N]	Static allowable moment		
		Pitch moment: Mp [N•m]	Yaw moment: My [N•m]	Roll moment: Mr [N•m]
LEHF10K2- \square	58	0.26	0.26	0.53
LEHF20K2- \square	98	0.68	0.68	1.4
LEHF32K2- \square	176	1.4	1.4	2.8
LEHF40K2- \square	294	2	2	4

Note) Values for load in the table indicate static values.

Calculation of allowable external force (when moment load is applied)	Calculation example
$\text { Allowable load } \mathbf{F}(\mathbf{N})=\frac{\mathbf{M} \text { (Static allowable moment) }(\mathbf{N} \cdot \mathrm{m})}{\mathbf{L} \times 10^{-3} *}$	When a static load of $f=10 \mathrm{~N}$ is operating, which applies pitch moment to point $\mathrm{L}=30 \mathrm{~mm}$ from the LEHF20K2- \square guide. Therefore, it can be used. $\begin{aligned} \text { Allowable load } F & =\frac{0.68}{30 \times 10^{-3}} \\ & =22.7(\mathrm{~N}) \\ \text { Load } f=10(\mathrm{~N})< & 22.7(\mathrm{~N}) \end{aligned}$

Electric Gripper 2-Finger Type

Step Motor (Servo/24 VDC)

Series LEHF $C \in$ gum

 LEHF10, 20, 32, 40

Stroke [mm]

Stroke/both sides		Size
Basic	Long stroke	
$\mathbf{1 6}$	$\mathbf{3 2}$	10
$\mathbf{2 4}$	$\mathbf{4 8}$	20
$\mathbf{3 2}$	$\mathbf{6 4}$	32
$\mathbf{4 0}$	$\mathbf{8 0}$	40

Motor cable entry

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEH series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole. [UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^6]

Actuator cable type*1

-	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)*2

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2 Fix the motor cable protruding from the actuator to keep it unmovable. For details about fixing method, refer to Wiring/Cables in the Electric Actuators Precautions.
(9) I/O cable length [m]**

-	Without cable
1	1.5
3	$3^{* 2}$
5	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 61 (For LECP6), page 74 (For LECP1) or page 81 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.
7. Actuator cable length [m]

-	Without cable
1	1.5
3	3
5	5
8	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 23.

10 Controller/Driver mounting

-	Screw mounting
\mathbf{D}	DIN rail mounting*

* DIN rail is not included. Order it separately. (Refer to page 56.)

8 Controller/Driver type*1

-	Without controller/driver	
6N	LECP6	NPN
6P	(Step data input type)	PNP
1N	LECP1	NPN
1P	(Programless type)	PNP
AN	LECPA*2	NPN
AP	(Pulse input type)	PNP

*1 For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.
*2 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) on page 81 separately.

Compatible Controllers/Driver

Type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECP1	LECPA
Features	Value (Step data) input Standard controller	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points	14 points	-
Power supply voltage	24 VDC		
Reference page	Page 55	Page 68	Page 75

Specifications

Model			LEHF10	LEHF20	LEHF32	LEHF40
	Opening/closing stroke (Both sides)	Basic	16	24	32	40
		Long stroke	32	48	64	80
	Gripping force [N] Note 1) Note 3)		3 to 7	11 to 28	48 to 120	72 to 180
	Opening and closing speed/Pushing speed [mm/s] ${ }^{\text {Noie } 2 \text { / }}$ Noie 3)		5 to 80/5 to 20	5 to 100/5 to 30		
	Drive method		Slide screw + Belt			
	Finger guide type		Linear guide (No circulation)			
	Repeated length measurement accuracy [mm] Note 4)		± 0.05			
	Finger backlash/both sides [mm] Note 5)		0.5 or less			
	Repeatability [mm] Note 6)		± 0.05			
	Positioning repeatability/one side [mm]		± 0.1			
	Lost motion/one side [mm] Note 7)		0.3 or less			
	Impact/Vibration resistance [m/s ${ }^{2}$] Note 8)		150/30			
	Max. operating frequency [C.P.M]		60			
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40			
	Operating humidity range [\%RH]		90 or less (No condensation)			
	Weight [g]	Basic	340	610	1625	1980
		Long stroke	370	750	1970	2500
告	Motor size		$\square 20$	$\square 28$	$\square 42$	
	Motor type		Step motor (Servo/24 VDC)			
	Encoder		Incremental A/B phase (800 pulse/rotation)			
	Rated voltage [V]		24 VDC ± 10 \%			
	Power consumption/Standby power consumption when operating [W] Wieq)		11/7	28/15	34/13	36/13
	Max. instantaneous power consumption [W] Note 10)		19	51	57	61

Note 1) Gripping force should be from 10 to 20 times the workpiece weight. Positioning force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHZ10/16, ± 25 \% (F.S.) for LEHZ20/25 and $\pm 20 \%$ (F.S.) for LEHZ32/40. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
Note 2) Pushing speed should be set within the range during pushing (gripping) operation. Otherwise, it may cause malfunction. The opening/closing speed and pushing speed are for both fingers. The speed for one finger is half this value.
Note 3) The speed and force may change depending on the cable length, load and mounting conditions.
Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 4) Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
Note 5) There will be no influence of backlash during pushing (gripping) operation. Make the stroke longer for the amount of backlash when opening.
Note 6) Repeatability means the variation of the gripping position (workpiece position) when the gripping operation is repeatedly performed by the same sequence for the same workpiece.
Note 7) A reference value for correcting an error in reciprocal operation which occurs during the positioning operation.
Note 8) Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Note 9) The power consumption (including the controller) is for when the gripper is operating.
The standby power consumption when operating is for when the gripper is stopped in the set position during operation, including the energy saving mode when gripping.

How to Mount

Note 10) The maximum instantaneous power consumption (including the controller) is for when the gripper is operating. This value can be used for the selection of the power supply.
a) When using the thread on the body
b) When using the thread on the mounting plate

c) When using the thread on the back of the body

Construction
Series LEHF

Component Parts

No.	Description	Material	Note
1	Body	Aluminium alloy	Anodised
2	Side plate A	Aluminium alloy	Anodised
3	Side plate B	Aluminium alloy	Anodised
4	Slide shaft	Stainless steel	Heat treatment + Special treatment
5	Slide bushing	Stainless steel	
6	Slide nut	Stainless steel	Heat treatment + Special treatment
7	Slide nut	Stainless steel	Heat treatment + Special treatment
8	Fixed plate	Stainless steel	
9	Motor plate	Carbon steel	
10	Pulley A	Aluminium alloy	
11	Pulley B	Aluminium alloy	
12	Bearing stopper	NBR	
13	Rubber bushing	-	
14	Bearing	-	
15	Belt	-	
16	Flange	-	
17	Finger assembly		
18	Step motor (Servo/24 VDC)		

Series LEHF

Dimensions

LEHF10K2-16: Basic

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

LEHF10K2-32: Long Stroke

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

Dimensions

LEHF20K2-24: Basic

LEHF20K2-48: Long Stroke

Series LEHF

Step Motor (Servo/24 VDC)

Dimensions

LEHF32K2-32: Basic

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

LEHF32K2-64: Long Stroke

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

Dimensions

LEHF40K2-40: Basic

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

LEHF40K2-80: Long Stroke

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

≈ 180

Selection Procedure

Step Check the gripping force.

Check the
conditions.
:---:
Select the model from
gripping force graph.
:---:
required gripping force.

| Workpiece mass: 0.1 kg |
| :--- | :--- |
| Guidelines for the selection of the gripper
 with respect to workpiece mass |
| Although conditions differ according to the workpiece |
| shape and the coefficient of friction between the |
| attachments and the workpiece, select a model that |
| can provide a gripping force of 7 to 13 times Note) |
| the workpiece weight, or more. |
| Note) For details, refer to the calculation of required gripping |
| force. |
| If high acceleration or impact forces are encountered |
| during motion, a further margin of safety should be |
| considered. |
| Example) When it is desired to set the gripping force at |
| 13 times or more above the workpiece weight. |
| Required gripping force |
| $=0.1 \mathrm{~kg} \times 13 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 12.7 \mathrm{~N}$ or more |

Pushing force: 70 \%
Gripping point distance: 30 mm

When the LEHS20 is selected.

- A gripping force of 14 N is obtained from the intersection point of gripping point distance $L=30$ mm and pushing force of 70%.
- Gripping force is 14 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 13 times or more.

- Pushing speed is satisfied at the point where 70% of the pushing force and $30 \mathrm{~mm} / \mathrm{sec}$ of the pushing speed cross.

Note) Confirm the pushing speed range from the determined pushing force [\%].

With "a" representing the margin, " F " is determined by the following formula:

$$
\mathbf{F}=\frac{\mathrm{mg}}{3 \mathbf{x} \mu} \mathbf{x a}
$$

"Gripping force at least 7 to 13 times the workpiece weight"

- The " 7 to 13 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" $=4$, which allows for impacts that occur during normal transportation, etc.

When gripping a workpiece as in the figure to the left, and with the following definitions, F : Gripping force [N]
μ : Coefficient of friction between the attachments and the workpiece
m : Workpiece mass [kg]
g : Gravitational acceleration (= $9.8 \mathrm{~m} / \mathrm{s}^{2}$)
mg : Workpiece weight [N]
the conditions under which the workpiece will not drop are
$\underline{\underline{3}} \times \mu \mathrm{F}>\mathrm{mg}$
$\stackrel{\rightharpoonup}{\boldsymbol{T}}$
thor
and therefore, $\mathbf{F}>\frac{\mathrm{mg}}{3 \times \mu}$

Note) • Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 7 to 13 times greater than the workpiece weight, as recommended by SMC.

- If high acceleration or impact forces are encountered during motion, a further margin should be considered.

Series LEHS

Selection Procedure

Step Check the gripping force: Series LEHS

- Indication of gripping force

The gripping force shown in the graphs on page 42 is expressed as "F", which is the gripping force of one finger, when three fingers and attachments are in full contact with the workpiece as shown in the figure below.

External Gripping State

- Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

F: Gripping force

F: Gripping force

Step Check the gripping force: Series LEHS

LEHS20

LEHS32

LEHS40

* Pushing force is one of the values of
step data that is input into the controller.
Compact LEHS10L

LEHS20L

Selection of Pushing Speed

- Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.

Basic

Compact

Electric Gripper 3-Finger Type

Step Motor (Servo/24 VDC)

Series LEHS C $\epsilon \mathrm{SO}_{\mathrm{S}}^{\mathrm{S}}$ LEHS10, 20, 32, 40

How to Order

1 Size
10
20
32
40

Note) Size: 10, 20 only

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEH series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

Lead
K Basic

Stroke/diameter	Size
$\mathbf{4}$	10
$\mathbf{6}$	20
$\mathbf{8}$	32
$\mathbf{1 2}$	40

5 Stroke [mm]

Motor cable entry

The actuator and controller/driver are sold as a package.
Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smc.eu

Actuator cable type*1

-	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)*2

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2 Fix the motor cable protruding from the actuator to keep it unmovable. For details about fixing method, refer to Wiring/Cables in the Electric Actuators Precautions.
$10 \mathrm{I} / \mathrm{O}$ cable length [m]**

-	Without cable
1	1.5
3	$3^{* 2}$
5	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 61 (For LECP6), page 74 (For LECP1) or page 81 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

8 Actuator cable length [m]

-	Without cable
$\mathbf{1}$	1.5
3	3
5	5
8	8^{*}
\mathbf{A}	10^{*}
\mathbf{B}	15^{*}
\mathbf{C}	20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 45.

11 Controller/Driver mounting

-	Screw mounting
\mathbf{D}	DIN rail mounting*

* DIN rail is not included. Order it separately. (Refer to page 56.)
(9) Controller/Driver type*1

-	Without controller/driver	
6N	LECP6	NPN
6P	(Step data input type)	PNP
1N	LECP1 (Programless type)	NPN
1P		PNP
AN	LECPA*2 (Pulse input type)	NPN
AP		PNP

*1 For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.
*2 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) on page 81 separately.

Compatible Controllers/Driver

Type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECP1	LECPA
Features	Value (Step data) input Standard controller	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points	14 points	-
Power supply voltage	24 VDC		
Reference page	Page 55	Page 68	Page 75

Series LEHS

Specifications

Model			LEHS10	LEHS20	LEHS32	LEHS40
	Opening/closing stroke (diameter)		4	6	8	12
	Gripping force [N] Note 1) Note 3)	Basic	2.2 to 5.5	9 to 22	36 to 90	52 to 130
		Compact	1.4 to 3.5	7 to 17	-	-
	Opening and closing speed/ Pushing speed [mm/s] Note 2) Note 3)		$\begin{aligned} & 5 \text { to } 70 / \\ & 5 \text { to } 50 \end{aligned}$	$\begin{aligned} & 5 \text { to } 80 / \\ & 5 \text { to } 50 \end{aligned}$	$\begin{gathered} 5 \text { to } 100 / \\ 5 \text { to } 50 \end{gathered}$	$\begin{gathered} 5 \text { to } 120 / \\ 5 \text { to } 50 \end{gathered}$
	Drive method		Slide screw + Wedge cam			
	Repeated length measurement accuracy [mm] ${ }^{\text {Note } 4)}$		± 0.05			
	Finger backlash/both sides [mm] Note 5)		0.25 or less			
	Repeatability [mm] ${ }^{\text {Note 6) }}$		± 0.02			
	Positioning repeatability/one side [mm]		± 0.05			
	Lost motion/one side [mm] ${ }^{\text {Note }}$ 7)		0.25 or less			
	Impact/Vibration resistance [m/s ${ }^{2}$] Note 8)		150/30			
	Max. operating frequency [C.P.M]		60			
	Operating temperature range [$\left.{ }^{\circ} \mathrm{C}\right]$		5 to 40			
	Operating humidity range [\%RH]		90 or less (No condensation)			
	Weight [g]	Basic	185	410	975	1265
		Compact	150	345	-	-
	Motor size		$\square 20$	$\square 28$	$\square 42$	
	Motor type		Step motor (Servo/24 VDC)			
	Encoder		Incremental A/B phase (800 pulse/rotation)			
	Rated voltage [V]		24 VDC ± 10 \%			
	Power consumption/ Standby power consumption whenoperating [W] Note 9)	Basic	11/7	28/15	34/13	36/13
		Compact	8/7	22/12	-	-
	Max. instantaneous power consumption [W] Note 10)	Basic	19	51	57	61
		Compact	14	42	-	-

Note 1) Gripping force should be from 10 to 20 times the workpiece weight. Positioning force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHZ10/16, $\pm 25 \%$ (F.S.) for LEHZ20/25 and $\pm 20 \%$ (F.S.) for LEHZ32/40. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
Note 2) Pushing speed should be set within the range during pushing (gripping) operation. Otherwise, it may cause malfunction. The opening/closing speed and pushing speed are for both fingers. The speed for one finger is half this value.
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 4) Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
Note 5) There will be no influence of backlash during pushing (gripping) operation. Make the stroke longer for the amount of backlash when opening.
Note 6) Repeatability means the variation of the gripping position (workpiece position) when the gripping operation is repeatedly performed by the same sequence for the same workpiece.
Note 7) A reference value for correcting an error in reciprocal operation which occurs during the positioning operation.
Note 8) Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Note 9) The power consumption (including the controller) is for when the gripper is operating.
The standby power consumption when operating is for when the gripper is stopped in the set position during operation, including the energy saving mode when gripping.

How to Mount

Note 10) The maximum instantaneous power consumption (including the controller) is for when the gripper is operating. This value can be used for the selection of the power supply.
a) Mounting A type
(when using the thread on the mounting plate)

b) Mounting B type
(when using the thread on the back of the body)

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminium alloy	Anodised
$\mathbf{2}$	Motor plate	Aluminium alloy	Anodised
$\mathbf{3}$	Guide ring	Aluminium alloy	
$\mathbf{4}$	Slide cam	Stainless steel	Heat treatment + Special treatement
$\mathbf{5}$	Slide bolt	Stainless steel	Heat treatment + Special treatement
$\mathbf{6}$	Finger	Carbon steel	Heat treatment + Special treatement
$\mathbf{7}$	End plate	Stainless steel	
$\mathbf{8}$	Step motor (Servo/24 VDC)		

Series LEHS

Step Motor (Servo/24 VDC)

Dimensions

LEHS10(L)K3-4

Mounting reference plane

	$[\mathrm{mm}]$	
Model	\mathbf{L}	$\left(\mathrm{L}_{1}\right)$
LEHS10K3-4	89.1	(59.6)
LEHS10LK3-4	72.6	(43.1)

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

LEHS20(L)K3-6

	$[\mathrm{mm}]$	
Model	\mathbf{L}	$(\mathrm{L} 1)$
LEHS20K3-6	98.8	(61.8)
LEHS20LK3-6	84.8	(47.8)

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

Dimensions

LEHS32K3-8

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

LEHS40K3-12

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

Series LEH
Electric Grippers/

Design/Selection

. Warning

1. Keep the specified gripping point.

If the specified gripping range is exceeded, excessive moment is applied to the sliding part of the finger, which may have an adverse affect on the life of the product.

L: Gripping point H: Overhang

O "L" and "H" are appropriate.

Gripping position

\times " L " is too long. $\quad \times$ " H " is too long.
2. Design the attachment to be lightweight and short.

A long and heavy attachment will increase inertia force when the product is opened or closed, which causes play on the finger. Even if the gripping point of the attachment is within a specified range, design it to be short and lightweight as possible.
For a long or large workpiece, select a model of a larger size or use two or more grippers together.
3. Provide a runoff space for attachment when a workpiece is extremely thin or small.
Without a runoff space, the product cannot perform stable gripping, and the displacement of a workpiece or gripping failure

4. Select the model that allows for gripping force in relation to the workpiece weight, as appropriate.
The selection of inappropriate model can cause dropping of a workpiece. Gripping force should be from 10 to 20 times (LEHZ, LEHF) or 7 to 13 times (LEHS) of the workpiece weight.
Gripping Force Accuracy
LEHZ(J)10(L) LEHZ(J)16(L) LEHZ(J)20(L) LEHZ(J)25(L) LEHZ32 LEHZ40

$\pm 30 \%$ (F.S.)	$\pm 25 \%$ (F.S.)	± 20 \% (F.S.)	
LEHF10	LEHF20	LEHF32	
LEHF40			
$\pm 30 \%$ (F.S.)	$\pm 25 \%$ (F.S.)	± 20 \% (F.S.)	
LEHS10(L)	LEHS20(L)	LEHS32	
$\pm 30 \%$ (F.S.)	$\pm 25 \%$ (F.S.)	$\pm 20 \%$ (F.S.)	

5. Do not use the product in applications where excessive external force (including vibration) or impact force is applied to it.
It may lead to breakage or galling, which causes operation failure. Do not apply impact and vibration outside of the specifications.
6. Select the model that allows for opening and closing width relative to a workpiece.
The selection of an inappropriate model will cause gripping at unexpected positions due to variable opening and closing width of the product and the diameter of a workpiece the product can handle. It is also necessary to make a larger stroke to overcome backlash created when the product will open after gripping.

Mounting

© Warning

1. Do not drop or hit the gripper to avoid scratching and denting the mounting surfaces.
Even slight deformation can cause the deterioration of accuracy and operation failure.
2. When mounting the attachment, use screws with adequate length and tighten them with adequate torque within the specified torque range.
Tightening the screws with a higher torque than recommended may cause malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

Mounting of Attachment to Finger

The attachment should be mounted at the torque specified in the following table by screwing the bolt into the finger mounting female thread and hole.
<Series LEHZ>

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEHZ(J)10(L)	$\mathrm{M} 2.5 \times 0.45$	0.3
LEHZ(J)16(L)	$\mathrm{M} 3 \times 0.5$	0.9
LEHZ(J)20(L)	$\mathrm{M} 4 \times 0.7$	1.4
LEHZ(J)25(L)	$\mathrm{M} 5 \times 0.8$	3.0
LEHZ32	$\mathrm{M} 6 \times 1$	5.0
LEHZ40	$\mathrm{M} 8 \times 1.25$	12.0

<Series LEHF>

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEHF10	$\mathrm{M} 2.5 \times 0.45$	0.3
LEHF20	$\mathrm{M} 3 \times 0.5$	0.9
LEHF32	$\mathrm{M} 4 \times 0.7$	1.4
LEHF40	$\mathrm{M} 4 \times 0.7$	1.4

<Series LEHS>

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEHS10(L)	$\mathrm{M} 3 \times 0.5$	0.9
LEHS20(L)	$\mathrm{M} 3 \times 0.5$	0.9
LEHS32	$\mathrm{M} 4 \times 0.7$	1.4
LEHS40	$\mathrm{M} 5 \times 0.8$	3.0

Series LEH
 Electric Grippers/ Specific Product Precautions 2

\triangle
Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smc.eu

Mounting

Mounting of Electric Gripper, Series LEHZ/LEHZJ
When using the thread on the side of the body

Attachment Finger
When using the thread on the mounting plate

When using the thread on the back of the body

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $\mathrm{L}[\mathrm{mm}]$
LEHZ(J)10(L)	$\mathrm{M} 4 \times 0.7$	1.4	6
LEHZ(J)16(L)	$\mathrm{M} 4 \times 0.7$	1.4	6
LEHZ(J)20(L)	$\mathrm{M} 5 \times 0.8$	3.0	8
LEHZ(J)25(L)	$\mathrm{M} 6 \times 1$	5.0	10
LEHZ32	$\mathrm{M} 6 \times 1$	5.0	10
LEHZ40	$\mathrm{M} 8 \times 1.25$	12.0	14

Mounting of Electric Gripper, Series LEHF
When using the thread on the body

When using the thread on the mounting plate

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEHF10	$\mathrm{M} 4 \times 0.7$	1.4
LEHF20	$\mathrm{M} 5 \times 0.8$	3.0
LEHF32	$\mathrm{M} 6 \times 1$	5.0
LEHF40	$\mathrm{M} 6 \times 1$	5.0

When using the thread on the back of the body

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $\mathrm{L}[\mathrm{mm}]$
LEHF10	$\mathrm{M} 5 \times 0.8$	3.0	10
LEHF20	$\mathrm{M} 6 \times 1$	5.0	12
LEHF32	$\mathrm{M} 8 \times 1.25$	12.0	16
LEHF40	$\mathrm{M} 8 \times 1.25$	12.0	16

Mounting of Electric Gripper, Series LEHS

When using the thread on the mounting plate

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEHS10(L)	$\mathrm{M} 3 \times 0.5$	0.9
LEHS20(L)	$\mathrm{M} 5 \times 0.8$	3.0
LEHS32	$\mathrm{M} 6 \times 1$	5.0
LEHS40	$\mathrm{M} 6 \times 1$	5.0

When using the thread on the back of the body

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $\mathrm{L}[\mathrm{mm}]$
LEHS10(L)	$\mathrm{M} 4 \times 0.7$	1.4	6
LEHS20(L)	$\mathrm{M} 6 \times 1$	5.0	10
LEHS32	$\mathrm{M} 8 \times 1.25$	12.0	14
LEHS40	$\mathrm{M} 8 \times 1.25$	12.0	14

Series LEH

Mounting

© Warning

3. Tighten the electric gripper mounting screws to the specified torque.
Tightening to a torque greater than the specified range may cause malfunction, and insufficient tightening may cause displacement.
4. When fixing the attachment to the finger, avoid applying excessive torque to the finger.
Play or deteriorated accuracy can result.
5. The mounting face has holes and slots for positioning. Use them for accurate positioning of the electric gripper if required.
6. When a workpiece is to be removed when it is not energized, open or close the finger manually or remove the attachment beforehand.
When the product is operated with the manual override screws, check the position of the manual override screws of the product, and leave necessary space. Do not apply excessive torque to the manual override screws that could lead to damage and malfunction of the product.
7. When gripping a workpiece, keep a gap in the horizontal direction to prevent the load from concentrating on one finger, to allow for workpiece misalignment.
For the same purpose, when moving a workpiece for alignment by the product, minimize the friction resistance created by the movement of the workpiece. The finger can be displaced, play or breakage.
8. Perform adjustment and confirmation to ensure there is no external force applied to the finger.
If the finger is subject to repetitive lateral load or impact load, it can cause play or breakage and the lead screw can get stuck, which results in operation failure. Allow a clearance to prevent the workpiece or the attachment from hitting gripper product at the end of the stroke.
1) Stroke end when fingers are open

2) Stroke end when gripper is moving

3) When turning over

9. Adjust the gripping point so that an excessive force will not be applied to the fingers when inserting a workpiece.
In particular, during a trial run, operate the product manually or at a low speed and check that the safety is assured without impact.

\triangle Caution

1. The parameters of the stroke and the opening/closing speed are for both fingers.
The stroke and the opening/closing speed for one finger is half a set parameter.
2. When gripping a workpiece by the product, be sure to set to the pushing operation.
Also, do not hit the workpiece to the finger and attachment in positioning operation or in the range of positioning operation. Otherwise, the lead screw can get caught and cause operation failure. However, if the workpiece cannot be gripped in pushing operation (such as a plastically deformed workpiece, rubber component, etc.), you can grip it in positioning operation with consideration to the elastic force of the workpiece. In this case, keep the driving speed for impact specified in item 3 on page 52.
When the operation is interrupted by a stop or temporary stop, and a pushing operation instruction is output just after operation is restarted, the operating direction will vary depending on the start position.

Series LEH Electric Grippers/ Specific Product Precautions 4

Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smc.eu

Handling

\triangle Caution

3. Keep the following driving speed range for pushing operation.

- LEHZ/LEHZJ: 5 to $50 \mathrm{~mm} / \mathrm{s}$ - LEHF10: 5 to $20 \mathrm{~mm} / \mathrm{s}$
- LEHF20/32/40: 5 to $30 \mathrm{~mm} / \mathrm{s}$ • LEHS: 5 to $50 \mathrm{~mm} / \mathrm{s}$

Operation at the speed outside of the range can get the lead screw caught and cause operation failure.
4. There is no backlash effect in pushing operation.

The return to origin is done by pushing operation.
The finger position can be displaced by the effect of the backlash during the positioning operation.
Take the backlash into consideration when setting the position.
5. Do not change the setting of energy saving mode.

When pushing (gripping) operation is continued, the heat generated by the motor can cause operation failure.
This is due to the self-lock mechanism in the lead screw, which makes the product keep the gripping force. To save the energy in this situation where the product is to be standby or continue to grip for extended periods of time, the product will be controlled to reduce current consumption (to 40% automatically after it has gripped a workpiece once). If there is the reduction of gripping force seen in the product after a workpiece has been gripped and deformed over certain amount of time, contact SMC separately.

6. INP output signal

1) Positioning operation

When the product comes within the set range by step data [In position], the INP output signal will turn on.
Initial value: Set to [0.50] or higher.
2) Pushing operation

When the effective force exceeds step data [Trigger LV], the INP output signal will turn on.
Use the product within the specified range of [Pushing force] and [Trigger LV].
a) To ensure that the gripper holds the workpiece with the set [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
b) When the [Pushing force] and [Trigger LV] are set less than the specified range, the INP output signal will turn on from the pushing start position.
c) The INP output signal is turned on when pushing in the stroke end of an electric gripper even if workpiece is not held.
<INP output signal in the controller version>

- SV1.0* or more

Although the product automatically switches to the energy saving mode (reduced current) after pushing operation is completed, the INP output signal remains ON.

- SV0.6* or less
a. When [Trigger LV] is set to 40% (when the value is the same as the energy saving mode)
Although the product automatically switches to the energy saving mode (reduced current) after pushing operation is completed, the INP output signal remains ON.
b. When [Trigger LV] is set higher than 40 \%

The product is turned on after pushing operation is completed, but INP output signal will turn off when current consumption is reduced automatically in energy saving mode.

Label position for controller version
<Pushing force and trigger level range> Series LEHZ

Motor size	Pushing speed [mm/sec]	Pushing force (Setting input value)
Basic	41 to 50	50% to 100%
	5 to 40	40% to 100%
Compact	31 to 50	70% to 100%
	21 to 30	50% to 100%
	5 to 20	40% to 100%

Series LEHZJ

Motor size	Body size	Pushing speed [mm/sec]	Pushing force (Setting input value)
Basic	10, 16	41 to 50	50% to 100%
	20, 25	5 to 40	40 \% to 100%
Compact	$10 \mathrm{~L}, 16 \mathrm{~L}$	21 to 50	80 \% to 100 \%
		11 to 20	60 \% to 100%
		5 to 10	50 \% to 100 \%
	$20 \mathrm{~L}, 25 \mathrm{~L}$	31 to 50	70 \% to 100 \%
		21 to 30	50% to 100%
		5 to 20	40 \% to 100 \%

Series LEHF

Pushing speed [mm/sec]	Pushing force (Setting input value)
21 to 30	50% to 100%
5 to 20	40% to 100%

Series LEHS

Motor size	Pushing speed [mm/sec]	Pushing force (Setting input value)
Basic	41 to 50	50% to 100%
	5 to 40	40% to 100%
Compact	31 to 50	80% to 100%
	11 to 30	60% to 100%
	5 to 10	40% to 100%

7. When releasing a workpiece, set the moving force to 150%. If the torque is too small when a workpiece is gripped in pushing operation, the product can have galling and become unable to release the workpiece.
8. If the finger has galling due to operational setting error, etc., open and close the finger manually.
When it is necessary to operate the product by the manual override screws, check the position of the manual override screws of the product, and leave necessary space. Do not apply excessive torque to the manual override screws. This may lead to damage and malfunction.

<series LEHZJ >

In the case of a gripper with dust covers, remove the encoder dust cover before operating the manual override.
Refit the encoder dust cover after using the manual override.

Series LEH Electric Grippers/

Handling

© Caution

9. Self-lock mechanism

The product keeps a gripping force due to the self-lock mechanism in the lead screw. Also, it will not operate in opposite direction even when external force is applied during gripping a workpiece

<Type of Stops, Cautions>

1) All the power supplies to the controller are shut off.

When the power supply is turned on to restart operation, the controller will be initialized, and the product can drop a workpiece due to a motor magnetic pole detective operation. (It means that there is finger motions of partial strokes by the phase detection of motor after power supply is turned on.) Remove the workpiece before restarting operation.
2) "EMG (stop)" of the CN1 of the controller is shut off. When using the stop switch on the teaching box;
a) In case both of [SVRE] and [SETON] are ON before stop, [SVRE]: OFF / [SETON]: ON
b) How to restart operation In this situation, since [SVRE] is on before stop, [SVRE] will be turned on automatically when stop is released, and operation can be restarted after that. It is not necessary to remove a workpiece beforehand because a motor magnetic pole detective operation will not occur.
c) Cautions

An alarm can take place when operation is restarted from stop. Check that [SVRE] is turned on after the release of stop and restart operation.
3) "M24V (motor driving power supply)" of the CN1 of the controller is shut off
a) There will be no change in output conditions due to stop.
b) How to restart operation

In this situation, operation can be restarted after stop is released. It is not necessary to remove a workpiece beforehand because a motor magnetic pole detective operation will not occur.
c) Cautions

An alarm can take place when stop is activated during operation or operation is restarted from stop.

10. Return to origin

1) It is recommended to set the directions of return to origin and workpiece gripping to the same direction.
If they are set opposite, there can be backlash, which worsens the measurement accuracy significantly.
2) If the direction of return to origin is set to CW (Internal gripping);
If the return to origin is performed with the product only, there can be significant deviation between different actuators. Use a workpiece to set return to origin.
3) If the return to origin is performed by using a workpiece;

The stroke (operation range) will be shortened. Recheck the value of step data.
4) If basic parameters (Origin offset) are used;

When the return to origin is set with [Origin offset], it is necessary to change the current position of the product. Recheck the value of step data.

Handling

© Caution

11. In pushing (gripping) operation, set the product to a position of at least 0.5 mm away from a workpiece. (This position is referred to as a pushing start position.)
If the product is set to the same position as a workpiece, the following alarms may be generated and operation may become unstable.
a. "Posn failed" alarm is generated.

The product cannot reach a pushing start position due to variation in the width of workpieces.
b. "Pushing ALM" alarm is generated.

The product is pushed back from a pushing start position after starting to push.
c. "Err overflow" alarm

The displacement at the pushing start position exceeds the specified range.
12. When mounting the product, keep a 40 mm or longer diameter for bends in the motor cable.
13. Finite orbit type guide is used in the actuator finger part. By using this, when there are inertial force which cause by movements or rotation to the actuator, steel ball will move to one side and this will cause a large resistance and degrade the accuracy. When there are inertial force which cause by movements or rotation to the actuator, operate the finger to full stroke.
Especially in long stroke type, the accuracy of finger may degrade.

Maintenance

\triangle Danger

1. When the product is to be removed, check it has not been gripping a workpiece.
There is a risk of dropping the workpiece.

© Caution

1. The dust cover on the gripper finger (series LEHZJ only) is a consumable item, replace the dust cover as and when it is necessary.
Otherwise, machining chips and fine particles may get into the product from the outside, leading to operation failure.
The dust cover on the gripper finger can be damaged if the finger attachment or the workpiece comes into contact with the dust cover during operation.

Controller/Driver

Step Data Input Type ….. Page 55

Step Motor (Servo/24 VDC) Series LECP6

Programless Type
 Page 68

Step Motor (Servo/24 VDC) Series LECP1

Gateway Unit Page 65

Pulse Input Type Page 75

Step Motor (Servo/24 VDC) Series LECPA

Step Data Input Type Step Motor (Servo/24 VDC) Series LECP6

\triangle Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LE series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

* When controller equipped type is selected when ordering the LE series, you do not need to order this controller.

The controller is sold as single unit after the compatible actuator is set.

Confirm that the combination of the controller and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smc.eu

Precautions on blank controller (LECP6 $\square \square$-BC)

Blank controller is a controller to which the customer can write the data of the actuator to be combined and used. Use the dedicated software (LEC-BCW) for data writing.

- Please download the dedicated software (LEC-BCW) via our website.
- Order the controller setting kit (LEC-W2) separately to use this software.

SMC website
http://www.smc.eu

Specifications

Basic Specifications

Item	LECP6
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power voltage: 24 VDC ± 10 \% Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	11 inputs (Photo-coupler isolation)
Parallel output	13 outputs (Photo-coupler isolation)
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
Lock control	Forced-lock release terminal Note 3)
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M ${ }^{\text {] }}$	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	150 (Screw mounting), 170 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the controller power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details. Note 3) Applicable to non-magnetizing lock.

Step Data Input Type/Step Motor (Servo/24 vDc) Series LECP6

How to Mount

a) Screw mounting (LECP6 $\square \square-\square$)
(Installation with two M4 screws)

b) DIN rail mounting (LECP6 $\square \square$ D- \square)
(Installation with the DIN rail)
DIN rail is locked.

Hook the controller on the DIN rail and press the lever of section \mathbf{A} in the arrow direction to lock it.

Note) When size 25 or more of the LE series are used, the space between the controllers should be 10 mm or more.

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions on page 57 for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting adapter

LEC-D0 (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type controller afterward.

Series LECP6

Dimensions

a) Screw mounting (LECP6 $\square \square-\square$)

b) DIN rail mounting (LECP6 $\square \square \mathrm{D}-\square$)

Step Data Input Type/Step Motor (Servo/24 vDC) Series LECP6

Wiring Example 1

Power Supply Connector: CN1 * Power supply plug is an accessory.
CN1 Power Supply Connector Terminal for LECP6 (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M 24V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Control power supply (+)	Control power supply (+) supplied to the controller
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

Power supply plug for LECP6

Wiring Example 2

Parallel I/O Connector: CN5

* When you connect a PLC etc., to the CN5 parallel I/O connector, use the I/O cable (LEC-CN5- \square). * The wiring should be changed depending on the type of the parallel I/O (NPN or PNP).

Wiring diagram

LECP6N $\square \square-\square$ (NPN)

Input Signal

Name	Details
COM +	Connects the power supply 24 V for input/output signal
COM-	Connects the power supply 0 V for input/output signal
IN0 to IN5	Step data specified Bit No. (Input is instructed in the combination of INO to 5.)
SETUP	Instruction to return to origin
HOLD	Operation is temporarily stopped
DRIVE	Instruction to drive
RESET	Alarm reset and operation interruption
SVON	Servo ON instruction

LECP6P $\square \square-\square$ (PNP)

Output Signal

Name	Details
OUT0 to OUT5	Outputs the step data no. during operation
BUSY	Outputs when the actuator is moving
AREA	Outputs within the step data area output setting range
SETON	Outputs when returning to origin
INP	Outputs when target position or target force is reached (Turns on when the positioning or pushing is completed.)
SVRE	Outputs when servo is on
*ESTOP Note)	Not output when EMG stop is instructed
*ALARM Note)	Not output when alarm is generated

Series LECP6

Step Data Setting

1. Step data setting for positioning

In this setting, the actuator moves toward and stops at the target position.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

O: Need to be set

O: Need to be adjusted as required.
Step Data (Positioning)
-: Setting is not required.

Necessity	Item	Details
©	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
\bigcirc	Speed	Transfer speed to the target position
\bigcirc	Position	Target position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Set 0. (If values 1 to 100 are set, the operation will be changed to the pushing operation.)
-	Trigger LV	Setting is not required.
-	Pushing speed	Setting is not required.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Condition that turns on the INP output signal. When the actuator enters the range of [in position], the INP output signal turns on. (It is unnecessary to change this from the initial value.) When it is necessary to output the arrival signal before the operation is completed, make the value larger.

2. Step data setting for pushing

The actuator moves toward the pushing start position, and when it reaches that position, it starts pushing with the set force or less.
The following diagram shows the setting items and operation.
The setting items and set values for this operation are stated below.

Step Data (Pushing)		Need to be set. Need to be adjusted as required.
Necessity	Item	Details
©	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
©	Speed	Transfer speed to the pushing start position
\bigcirc	Position	Pushing start position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Pushing force ratio is defined. The setting range differs depending on the electric actuator type. Refer to the Operation Manual for the electric actuator.
©	Trigger LV	Condition that turns on the INP output signal. The INP output signal turns on when the generated force exceeds the value. Trigger level should be the pushing force or less.
\bigcirc	Pushing speed	Pushing speed during pushing. When the speed is set fast, the electric actuator and work pieces might be damaged due to the impact when they hit the end, so this set value should be smaller. Refer to the Operation Manual for the electric actuator.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
©	In position	Transfer distance during pushing. If the transferred distance exceeds the setting, it stops even if it is not pushing. If the transfer distance is exceeded, the INP output signal will not turn on.

Step Data Input Type/Step Motor (Servo/24 vDc) Series LECP6

Signal Timing

Return to Origin

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuit.

* "OUT" is output when "DRIVE" is changed from ON to OFF.
(When power supply is applied, "DRIVE" or "RESET" is turned ON or
"*ESTOP" is turned OFF, all of the "OUT" outputs are OFF.)

HOLD

* When the actuator is in the positioning range in the pushing operation, it does not stop even if HOLD signal is input.

Pushing Operation

[^7]
Series LECP6

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

Cable type ${ }^{\circ}$

-	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

LE-CP- ${ }_{A}^{8} \mathrm{~B} /$ Cable length: $8 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$ (* Produced upon receipt of order)

Signal	Connector A terminal no.		Cable colour	Connector C terminal no.
A	B-1		Brown	2
$\overline{\text { A }}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3		Blue	4
		Shield	Cable colour	Connector D terminal no.
Vcc	B-4		Brown	12
GND	A-4		Black	13
$\overline{\mathrm{A}}$	B-5	-	Red	7
A	A-5	1	Black	6
\bar{B}	B-6	1	Orange	9
B	A-6	+	Black	8

Option: I/O Cable

Connector pin no.	Insulation colour	Dot mark	Dot colour
A1	Light brown	\square	Black
A2	Light brown	\square	Red
A3	Yellow	\square	Black
A4	Yellow	\square	Red
A5	Light green	\square	Black
A6	Light green	\square	Red
A7	Grey	\square	Black
A8	Grey	\square	Red
A9	White	\square	Black
A10	White	\square	Red
A11	Light brown	$\square \square$	Black
A12	Light brown	■ ■	Red
A13	Yellow	■ ■	Black

Connector pin no.	Insulation colour	Dot mark	Dot colour
B1	Yellow	■ ■	Red
B2	Light green	$\square \square$	Black
B3	Light green	$\square \square$	Red
B4	Grey	$\square \square$	Black
B5	Grey	$\square \square$	Red
B6	White	$\square \square$	Black
B7	White	$\square \square$	Red
B8	Light brown	■■■	Black
B9	Light brown	■■■	Red
B10	Yellow	■■■	Black
B11	Yellow	■■■	Red
B12	Light green	■■■	Black
B13	Light green	■■■	Red
-	Shield		

Series LEC
 Controller Setting Kit/LEC-W2

How to Order

Contents

Description		Model*
(1)	Controller setting software (CD-ROM)	LEC-W2-S
(2)	Communication cable	LEC-W2-C
(3)	USB cable (between the PC and the communication cable)	LEC-W2-U

* Can be ordered separately.

Compatible Controller/Driver

Step data input type	Series LECP6
Pulse input type	Series LECPA

Hardware Requirements

OS	IBM PC/AT compatible machine running Windows ${ }^{\circledR}$ XP (32-bit), Windows ${ }^{\circledR 7}$ (32-bit and 64-bit), Windows ${ }^{\circledR} 8.1$ (32-bit and 64-bit).
Communication interface	USB 1.1 or USB 2.0 ports
Display	XGA (1024 $\times 768$) or more

* Windows ${ }^{\circledR}$ XP, Windows ${ }^{\circledR 7}$ and Windows ${ }^{\circledR 8} 8.1$ are registered trademarks of Microsoft Corporation in the United States.
* Refer to SMC website for version upgrade information, http://www.smc.eu

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and testing of the drive can be performed on the same page.
- Can be used to jog and move at a constant rate.

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

Teaching Box/LEC-T1

How to Order

Standard functions
 - Chinese character display
 - Stop switch is provided.

Option

- Enable switch is provided.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range $\left[{ }^{\circ} \mathbf{C}\right]$	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**) - Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor

Menu Operations Flowchart

Menu	Data
Data Monitor Jog Test ALM TB setting	Step data no.
	Setting of two items selected below
	Ver. 1.**:
	Position, Speed, Force, Acceleration, Deceleration
	Ver. 2.**:
	Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD,
	Trigger LV, Pushing speed, Moving force, Area 1, Area 2, In position

Trigger LV, Pushing speed, Moving force, Area 1, Area 2, In position

Normal Mode

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output)
Monitor	- Drive monitor - Output signal monitor - Input signal monitor - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the controller which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to controller Loads the data which is saved in the teaching box to the controller which is being used for communication. - Delete the saved data. - File protection (Ver. 2.**)
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the controller

Gateway Unit Series LEC-G

How to Order

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LE series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Specifications

Model			LEC-G	GMJ2■	LEC-GDN1 \square	LEC-GPR1 \square	LEC-GEN1 \square
Communication specifications	Applicable system	Fieldbus		-Link	DeviceNet ${ }^{\text {TM }}$	PROFIBUS DP	EtherNet//IPTM
		Version Note 1)		r. 2.0	Release 2.0	V1	Release 1.0
	Communication speed [bps]		$\begin{array}{r} 156 \mathrm{k} / 62 \\ / 5 \mathrm{M} \end{array}$	$\begin{aligned} & 25 \mathrm{k} / 2.5 \mathrm{M} \\ & \mathrm{M} / 10 \mathrm{M} \end{aligned}$	125 k/250 k/500 k	$\begin{gathered} \hline 9.6 \mathrm{k} / 19.2 \mathrm{k} / 45.45 \mathrm{k} / \\ 93.75 \mathrm{k} / 187.5 \mathrm{k} / 500 \mathrm{k} / \\ 1.5 \mathrm{M} / 3 \mathrm{M} / 6 \mathrm{M} / 12 \mathrm{M} \\ \hline \end{gathered}$	$10 \mathrm{M} / 100 \mathrm{M}$
	Configuration file ${ }^{\text {Note 2) }}$			-	EDS file	GSD file	EDS file
	1/O occupation area		4 stations occupied (8 times setting)	Input 896 points 108 words Output 896 points 108 words	Input 200 bytes Output 200 bytes	Input 57 words Output 57 words	Input 256 bytes Output 256 bytes
	Power supply for communication Power supply voltage [V] ${ }^{\text {Noe } 6]}$ Internal current consumplion [mA]			-	11 to 25 VDC	-	-
				-	100	-	-
	Communication connector specifications		Connector	(Accessory)	Connector (Accessory)	D-sub	RJ45
	Terminating resistor		Not in	ncluded	Not included	Not included	Not included
Power supply voltage [V] ${ }^{\text {Note } 6)}$			24 VDC ± 10 \%				
Current consumption [mA]	Not connected to teaching box		200				
	Connected to teaching box		300				
EMG output terminal			30 VDC 1A				
Controller specifications	Applicable controllers		Series LECP6, Series LECA6				
	Communication speed [bps] ${ }^{\text {Note } 3)}$		$115.2 \mathrm{k} / 230.4 \mathrm{k}$				
	Max. number of connectable controllers Note 4)			12	8 Note 5)	5	12
Accessories			Power supply connector, communication connector			Power supply connector	
Operating temperature range [${ }^{\mathrm{C}}$]			0 to 40 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]			-10 to 60 (No freezing)				
Storage humidity range [\%RH]			90 or less (No condensation)				
Weight [g]			200 (Screw mounting), 220 (DIN rail mounting)				

Note 1) Please note that the version is subject to change.
Note 2) Each file can be downloaded from the SMC website, http://www.smc.eu
Note 3) When using a teaching box (LEC-T1- \square), set the communication speed to 115.2 kbps .
Note 4) A communication response time for 1 controller is approximately 30 ms .
Refer to "Communication Response Time Guideline" for response times when several controllers are connected.
Note 5) For step data input, up to 12 controllers connectable.
Note 6) When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Communication Response Time Guideline

Response time between gateway unit and controllers depends on the number of controllers connected to the gateway unit. For response time, refer to the graph below.

* This graph shows delay times between gateway unit and controllers. Fieldbus network delay time is not included.

Dimensions

Screw mounting (LEC-G $\square \square \square$)

Applicable Fieldbus protocol: CC-Link Ver. 2.0

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol: EtherNet/IPTM

Series LEC-G

Dimensions

DIN rail mounting (LEC-G $\square \square \square D$)

Applicable Fieldbus protocol: CC-Link Ver. 2.0

* Mountable on DIN rail (35 mm)

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol: EtherNet/IPTM

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions above for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

[^8]
Programless Controller Series LECP1

How to Order

The controller is sold as single unit after the compatible actuator is set.
Confirm that the combination of the controller and the actuator is correct.

* Refer to the Operation Manual for using the products. Please download it via our website, http://www.smc.eu

Specifications

Basic Specifications

Item	LECP1
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power supply voltage: 24 VDC ± 10 \%, Max. current consumption: 3A (Peak 5A) Note 2) [Including the motor drive power, control power supply, stop, lock release]
Parallel input	6 inputs (Photo-coupler isolation)
Parallel output	6 outputs (Photo-coupler isolation)
Stop points	14 points (Position number 1 to 14(E))
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
7-segment LED display Note 3)	1 digit, 7 -segment display (Red) Figures are expressed in hexadecimal (" 10 " to " 15 " in decimal number are expressed as " A " to " F ")
Lock control	Forced-lock release terminal Note 4)
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M 2]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	130 (Screw mounting), 150 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the controller input power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the each actuator's operation manual etc. for details.
Note 3) " 10 " to " 15 " in decimal number are displayed as follows in the 7 -segment LED.

Note 4) Applicable to non-magnetizing lock.

Controller Details

No.	Display	Description	Details
(1)	PWR	Power supply LED	Power supply ON/Servo ON : Green turns on Power supply ON/Servo OFF: Green flashes
(2)	ALM	Alarm LED	With alarm : Red turns on Parameter setting : Red flashes
(3)	-	Cover	Change and protection of the mode switch (Close the cover after changing switch)
(4)	-	FG	Frame ground (Tighten the bolt with the nut when mounting the controller. Connect the ground wire.)
(5)	-	Mode switch	Switch the mode between manual and auto.
(6)	-	7-segment LED	Stop position, the value set by (8) and alarm information are displayed.
(7)	SET	Set button	Decide the settings or drive operation in Manual mode.
(8)	-	Position selecting switch	Assign the position to drive (1 to 14), and the origin position (15).
(9)	MANUAL	Manual forward button	Perform forward jog and inching.
(10)		Manual reverse button	Perform reverse jog and inching.
(11)		Forward speed switch	16 forward speeds are available.
(12)		Reverse speed switch	16 reverse speeds are available.
(13)	ACCEL	Forward acceleration switch	16 forward acceleration steps are available.
(14)		Reverse acceleration switch	16 reverse acceleration steps are available.
(15)	CN1	Power supply connector	Connect the power supply cable.
(16)	CN2	Motor connector	Connect the motor connector.
(17)	CN3	Encoder connector	Connect the encoder connector.
(18)	CN4	I/O connector	Connect I/O cable.

How to Mount

Controller mounting shown below.

1. Mounting screw (LECP1 $\square \square-\square$)
 (Installation with two M4 screws)

2. Grounding

Tighten the bolt with the nut when mounting the ground wire as shown below.

Note) When size 25 or more of the LE series are used, the space between the controllers should be 10 mm or more.

\triangle Caution

- M4 screws, cable with crimping terminal and tooth lock washer are not included. Be sure to carry out grounding earth in order to ensure the noise tolerance.
- Use a watchmaker's screwdriver of the size shown below when changing position switch (8) and the set value of the speed/acceleration switch (11) to (14).
Size
End width L: 2.0 to $2.4[\mathrm{~mm}]$
End thickness W: 0.5 to $0.6[\mathrm{~mm}]$

Dimensions
DIN rail mounting (LEC $\square 1 \square \square \mathrm{D}-\square$)

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5	273
No.	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40		
L	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5		

DIN rail mounting adapter

LEC-1-D0 (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type controller afterwards.

Screw mounting (LEC $\square 1 \square \square-\square$)

Series LECP1

Wiring Example 1

Power Supply Connector: CN1

* When you connect a CN1 power supply connector, use the power supply cable (LEC-CK1-1).
* Power supply cable (LEC-CK1-1) is an accessory.

CN1 Power Supply Connector Terminal for LECP1

Terminal name Cable colour	Function	Details	
0V	Blue	Common supply (-)	M 24V terminal/C 24V terminal/BK RLS terminal are common (-).
M 24V	White	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Brown	Control power supply (+)	Control power supply (+) supplied to the controller
BK RLS	Black	Lock release (+)	Input (+) for releasing the lock

Power supply cable for LECP1 (LEC-CK1-1)

Wiring Example 2

Parallel I/O Connector: CN4

* When you connect a PLC etc., to the CN4 parallel I/O connector, use the I/O cable (LEC-CK4- \square).
* The wiring should be changed depending on the type of the parallel I/O (NPN or PNP).

- NPN

		Power supply 24 VDC for I/O signal
CN4		
COM +	1	$1 \mapsto$
COM-	2	
OUT0	3	Load -
OUT1	4	Load -
OUT2	5	Load -
OUT3	6	Load -
BUSY	7	Load -
ALARM	8	Load
INO	9	
IN1	10	
IN2	11	
IN3	12	
RESET	13	
STOP	14	

Input Signal

Name	Details			
COM+	Connects the power supply 24 V for input/output signal			
COM-	Connects the power supply 0 V for input/output signal			
IN0 to IN3	- Instruction to drive (input as a combination of INO to IN3) - Instruction to return to origin (INO to IN3 all ON simultaneously) Example - (instruction to drive for position no. 5)			
	IN3	IN2	IN1	IN0
	OFF	ON	OFF	ON
RESET	Alarm reset and operation interruption During operation: deceleration stop from position at which signal is input (servo ON maintained) While alarm is active: alarm reset			
STOP	Instruction to stop (after maximum deceleration stop, servo OFF)			

Input Signal [INO - IN3] Position Number Chart O: OFF ©: ON

Position number	IN3	IN2	IN1	INO
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10 (A)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 (B)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12 (C)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13 (D)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14 (E)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Return to origin	\bigcirc	\bigcirc	\bigcirc	\bigcirc

PNP

		V	
CN4			I/O signal
COM+	1		- \longmapsto
COM-	2		
OUTO	3	Load	
OUT1	4	Load	
OUT2	5	Load	
OUT3	6	Load	
BUSY	7	Load	
ALARM	8	Load	
INO	9		
IN1	10		
IN2	11		
IN3	12		
RESET	13		
STOP	14		

Output Signa

Name	Details			
	Turns on when the positioning or pushing is completed. (Output is instructed in the combination of OUT0 to 3.) Example - (operation complete for position no. 3)			
	OUT3 OUT2 OUT1 OFF OFF OUT0 BUSY Outputs when the actuator is moving *ALARM Note) Not output when alarm is active or servo OFF			

Note) Signal of negative-logic circuit (N.C.)

Output Signal [OUTO - OUT3] Position Number Chart O: OFF ©: ON

Position number	OUT3	OUT2	OUT1	OUT0
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	-	\bigcirc	\bigcirc
6	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10 (A)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 (B)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12 (C)	-	\bigcirc	\bigcirc	\bigcirc
13 (D)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14 (E)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Return to origin	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Signal Timing
(1) Return to Origin

* "*ALARM" is expressed as negative-logic circuit.

(2) Positioning Operation

(3) Cut-off Stop (Reset Stop)

(4) Stop by the STOP Signal

(5) Alarm Reset

[^9]
Series LECP1

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

LE - CP -
Cable length (L) [m]

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
A	10^{*}
B	15^{*}
\mathbf{C}	20^{*}

* Produced upon receipt of order (Robotic cable only)

Cable type

-	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{A C}^{8 B}$ /Cable length: $\mathbf{8 m , 1 0 m , 1 5 m , 2 0 ~ m}$ (* Produced upon receipt of order)

Signal	Connector A terminal no.		Cable colour	Connector C terminal no.
A	B-1		Brown	2
$\overline{\mathrm{A}}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3		Blue	4
-		Shield	Cable colour	Connector D terminal no.
Vcc	B-4	-	Brown	12
GND	A-4	$1 \times \sim 1$	Black	13
A	B-5		Red	7
A	A-5	$1 \times \infty$	Black	6
B	B-6	I	Orange	9
B	A-6	', '---	Black	8

Options

[Power supply cable]

LEC-CK1-1

Terminal name	Covered colour	Function
OV	Blue	Common supply (-)
M 24V	White	Motor power supply $(+)$
C 24V	Brown	Control power supply (+)
BK RLS	Black	Lock release (+)

> * Conductor size: AWG20

[I/O cable]

LEC - CK4 - \square Cable length (L) [m] | 1 | 1.5 |
| :---: | :---: |
| 3 | 3 |
| 5 | 5 |

Terminal no.	Insulation colour	Dot mark	Dot colour	Function
1	Light brown	\square	Black	COM+
2	Light brown	\square	Red	COM-
3	Yellow	\square	Black	OUT0
4	Yellow	\square	Red	OUT1
5	Light green	\square	Black	OUT2
6	Light green	\square	Red	OUT3
7	Grey	\square	Black	BUSY
8	Grey	\square	Red	ALARM
9	White	\square	Black	IN0
10	White	\square	Red	IN1
11	Light brown	$\square ■$	Black	IN2
12	Light brown	$\square ■$	Red	IN3
13	Yellow	$\square ■$	Black	RESET
14	Yellow	$\square ■$	Red	STOP

* Conductor size: AWG26

[^10]
Pulse Input Type
 Series LECPA

\triangle Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LE series and the LECPA series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the LECPA series (step motor driver), EMC compliance was tested by installing a noise filter set (LEC-NFA).
Refer to page 81 for the noise filter set. Refer to the LECPA Operation Manual for installation.

[UL-compliant products]

When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Part number except cable specifications and actuator options
Example: Enter "LEHZ10LK2-4"
for the LEHZ10LK2-4AF-R16N1.
BC
Blank controller Note)
Note) The dedicated software (LEC-BCW) is required.

* When controller equipped type is selected when ordering the LE series, you do not need to order this driver. * When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) separately.

The driver is sold as single unit after

 the compatible actuator is set.Confirm that the combination of the driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smc.eu

Precautions on blank controller (LECPA $\square \square-B C)$

Blank controller is a controller to which the customer can write the data of the actuator to be combined and used. Use the dedicated software (LEC-BCW) for data writing.

- Please download the dedicated software (LEC-BCW) via our website.
- Order the controller setting kit (LEC-W2) separately to use this software.

SMC website
http://www.smc.eu

Specifications

Item	LECPA
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power voltage: 24 VDC ± 10 \% Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	5 inputs (Except photo-coupler isolation, pulse input terminal, COM terminal)
Parallel output	9 outputs (Photo-coupler isolation)
Pulse signal input	Maximum frequency: 60 kpps (Open collector), 200 kpps (Differential) Input method: 1 pulse mode (Pulse input in direction), 2 pulse mode (Pulse input in differing directions)
Compatible encoder	Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
Lock control	Forced-lock release terminal Note 3)
Cable length [m]	I/O cable: 1.5 or less (Open collector), 5 or less (Differential), Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M]]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	120 (Screw mounting), 140 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the driver power supply. When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details.
Note 3) Applicable to non-magnetizing lock.

How to Mount

b) DIN rail mounting (LECPA $\square \square \mathrm{D}-\square$) (Installation with the DIN rail)

DIN rail is locked.

Hook the driver on the DIN rail and press the lever of section \mathbf{A} in the arrow direction to lock it.

Note) The space between the drivers should be 10 mm or more.

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions on page 77 for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Series LECPA

Dimensions
a) Screw mounting (LECPA $\square \square-\square$)

b) DIN rail mounting (LECPA $\square \square \mathrm{D}-\square$)

Wiring Example 1

Power Supply Connector: CN1 * Power supply plug is an accessory.
CN1 Power Supply Connector Terminal for LECPA (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M 24V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the driver
C 24V	Control power supply (+)	Control power supply (+) supplied to the driver
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

Power supply plug for LECPA

Wiring Example 2

Parallel I/O Connector: CN5 * When you connect a PLC etc., to the CN5 parallel I/O connector, use the I/O cable (LEC-CL5-ם).

LECPAN $\square \square-\square$ (NPN)

Note 1) For pulse signal wiring method, refer to "Pulse Signal Wiring Details".
Note 2) Output when the power supply of the driver is ON. (N.C.)
Input Signal

Name	Details
COM +	Connects the power supply 24 V for input/output signal
COM-	Connects the power supply 0 V for input/output signal
SETUP	Instruction to return to origin
RESET	Alarm reset
SVON	Servo ON instruction
CLR	Deviation reset
TL	Instruction to pushing operation

LECPAP $\square \square-\square$ (PNP)

Output Signal

Name	Details
BUSY	Outputs when the actuator is operating
SETON	Outputs when returning to origin
INP	Outputs when target position is reached
SVRE	Outputs when servo is on
*ESTOP Note 3)	Not output when EMG stop is instructed
*ALARM Note 3)	Not output when alarm is generated
AREA	Outputs within the area output setting range
WAREA	Outputs within W-AREA output setting range
TLOUT	Outputs during pushing operation

Note 3) Signal of negative-logic circuit ON (N.C.)

Pulse Signal Wiring Details

- Pulse signal output of positioning unit is differential output

- Pulse signal output of positioning unit is open collector output

Pulse signal power supply

Note) Connect the current limit resistor R in series to correspond to the pulse signal voltage.

Pulse signal power supply voltage	Current limit resistor R specifications	Current limit resistor part no.
$24 \mathrm{VDC} \pm 10 \%$	$3.3 \mathrm{k} \Omega \pm 5 \%$ $(0.5 \mathrm{~W}$ or more)	LEC-PA-R-332
$5 \mathrm{VDC} \pm 5 \%$	$390 \Omega \pm 5 \%$ $(0.1 \mathrm{~W}$ or more $)$	LEC-PA-R-391

Series LECPA

Signal Timing

Return to Origin

If the actuator is within the "in position" range of the basic | parameter, INP will turn ON, but if not, it will remain OFF.

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuit.

Positioning Operation

Pushing Operation

Note) If pushing operation is stopped when there is no pulse deviation, the moving part of the actuator may pulsate.

Alarm Reset

[^11]
Pulse Input Type Series LECPA

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

 (* Produced upon receipt of order)

Cable type

-	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

Signal	Connector A terminal no.		Cable colour	Connector C terminal no.
A	B-1		Brown	2
$\overline{\mathrm{A}}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3		Blue	4
		Shield	Cable colour	Connector D terminal no.
Vcc	B-4	1 -	Brown	12
GND	A-4	11	Black	13
$\overline{\mathrm{A}}$	B-5	1-1	Red	7
A	A-5		Black	6
\bar{B}	B-6	+	Orange	9
B	A-6		Black	8

Series LECPA

Options
[I/O cable]

* Pulse input usable only with differential. Only 1.5 m cables usable with open collector.

[Noise filter set]

Step motor driver (Pulse input type)

LEC-NFA

Contents of the set: 2 noise filters

(Manufactured by WURTH ELEKTRONIK: 74271222)

[^12]| Pin no. | Insulation colour | Dot mark | Dot colour |
| :---: | :---: | :---: | :---: |
| 1 | Light brown | \square | Black |
| 2 | Light brown | \square | Red |
| 3 | Yellow | \square | Black |
| 4 | Yellow | \square | Red |
| 5 | Light green | \square | Black |
| 6 | Light green | \square | Red |
| 7 | Grey | \square | Black |
| 8 | Grey | \square | Red |
| 9 | White | \square | Black |
| 10 | White | \square | Red |
| 11 | Light brown | ■ | Black |

Pin no.	Insulation colour	Dot mark	Dot colour
12	Light brown	■	Red
13	Yellow	■■	Black
14	Yellow	■	Red
15	Light green	■	Black
16	Light green	$\square \square$	Red
17	Grey	$\square \square$	Black
18	Grey	■	Red
19	White	■	Black
20	White	■	Red
$\begin{array}{\|c\|} \hline \text { Round teminal } \\ 0.5-5 \end{array}$	Green		

[Current limit resistor]

This optional resistor (LEC-PA-R- \square) is used when the pulse signal output of the positioning unit is open collector output.

LEC-PA-R-ㅁ

Current limit resistor

Symbol	Resistance	Pulse signal power supply voltage
$\mathbf{3 3 2}$	$3.3 \mathrm{k} \Omega \pm 5 \%$	24 VDC $\pm 10 \%$
$\mathbf{3 9 1}$	$390 \Omega \pm 5 \%$	5 VDC $\pm 5 \%$

* Select a current limit resistor that corresponds to the pulse signal power supply voltage.
* For the LEC-PA-R- \square, two pieces are shipped as a set.

How to Order
Controller setting kit ${ }^{\text {Cor| }}$ Description
(Japanese and English are available.)
Contents

(1)	Controller setting software (CD-ROM)	LEC-W2-S	
(2)	Communication cable	LEC-W2-C	
(3)	USB cable (between the PC and the communication cable)	LEC-W2-U	

* Can be ordered separately.

Compatible Controller/Driver

Step data input type
 Pulse input type
 Series LECP6
 Series LECPA

Hardware Requirements

OS	IBM PC/AT compatible machine running Windows ${ }^{\circledR}$ XP (32-bit), Windows ${ }^{\circledR 7}$ (32-bit and 64-bit), Windows ${ }^{\circledR 8} 8.1$ (32-bit and 64-bit).
Communication interface	USB 1.1 or USB 2.0 ports
Display	XGA (1024 $\times 768$) or more

* Windows ${ }^{\circledR} \mathrm{XP}$, Windows ${ }^{\circledR 7}$ and Windows ${ }^{\circledR 8.1}$ are registered trademarks of Microsoft Corporation in the United States.
* Refer to SMC website for version upgrade information, http://www.smc.eu

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and testing of the drive can be performed on the same page.
- Can be used to jog and move at a constant rate.

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

Teaching Box/LEC-T1

Standard functions
 - Chinese character display - Stop switch is provided.

Option

- Enable switch is provided.

How to Order

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range [$\left.{ }^{\circ} \mathrm{C}\right]$	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation Note 1) - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**)
- Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor	

Menu Operations Flowchart

Menu	Data	
Data Monitor Jog Test ALM TB setting	Step data no. Setting of two items selected below Ver. 1.**: Position, Speed, Force, Acceleration, Deceleration Ver. 2.**: Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD, Trigger LV, Pushing speed, Moving force, Area 1, Area 2, In position	

Normal Mode

Function	Details
Step data	－Step data setting
Parameter	－Parameters setting
Test	－Jog operation／Constant rate movement －Return to origin －Test drive Note 1） （Specify a maximum of 5 step data and operate．） －Forced output （Forced signal output，Forced terminal output）Note 2）
Monitor	－Drive monitor －Output signal monitor Note 2） －Input signal monitor Note 2） －Output terminal monitor －Input terminal monitor
ALM	－Active alarm display （Alarm reset） －Alarm log record display
File	－Data saving Save the step data and parameters of the driver which is being used for communication（it is possible to save four files，with one set of step data and parameters defined as one file）． －Load to driver Loads the data which is saved in the teaching box to the driver which is being used for communication． －Delete the saved data． －File protection（Ver．2．＊＊）
TB setting	－Display setting （Easy／Normal mode） －Language setting （Japanese／English） －Backlight setting －LCD contrast setting －Beep sound setting －Max．connection axis －Distance unit（mm／inch）
Reconnect	－Reconnection of axis

Menu Operations Flowchart

Menu	Step data
Stapa	
Stepata no	

Menu
Step data
Parameter
Monitor
Test
ALM
File
TB setting
Reconnect

Test drive Note Forced output Note 2）	Input terminal monitor
ALM	
Status ALM Log record	Status
File	Active alarm display Alarm reset
Data saving Load to driver	ALM Log record display

Dimensions

No．	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display（with backlight）
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in，the switch locks and stops． The lock is released when it is turned to the right．
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch （Option）	Prevents unintentional operation（unexpected opera－ tion）of the jog test function． Other functions such as data change are not covered．
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length：3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the driver

5 types of communication protocols

New (1O-Link
EtherCAT. ${ }^{\sim}$

 +
Deviceilet

Etherivet/IP

Can be additionally
installed in an
existing network

<Applicable electric actuators>

Gripper Series LEH

Rotary table Series LER

Series JXCE1/91/P1/D1/L1

Two types of operation command

Step no. defined operation: Operate using the preset step data in the controller.
Numerical data defined operation: The actuator operates using values such as position and speed from the PLC.

Numerical monitoring available

Numerical information, such as the current speed, current position, and alarm codes, can be monitored on the PLC.

Transition wiring of communication cables

Two communication ports are provided.

* For the DeviceNet ${ }^{\text {TM }}$ type, transition wiring is possible using a branch connector.
* 1 to 1 in the case of IO-Link

IO-Link communication can be performed.

The data storage function eliminates the need for troublesome resetting of step data and parameters when changing over the controller.

IO-Link is an open communication interface technology between the sensor/actuator and the I/O terminal that is an international standard, IEC61131-9.

Application

- Step data and parameters can be set from the master side.
Step data and parameters can be set or changed by means of IO-Link communication.

Data storage function

When the controller is changed, the parameters and step data for the actuator are automatically set.*1

- 4-wire unshielded cables can be used.

[^13]
System Construction

A.....- Actuator cable	Electric actuators	Series LEY/LEYG Series LEF Standard cable	Robotic cable
SE-CP- \square-S	LE-CP- \square		

Series LEL
Series LEPY/LEPS
Series LEH
Series LEM

(Accessory)

Options

- Teaching box
(With 3 m cable) LEC-T1-3EG \square

- Controller setting kit p. 93

Controller setting kit
(A communication cable, USB cable, and
controller setting software (CD-ROM) are included.)

Communication cable p. 93 (3 m)
\square N10

Conversion cable*1 p. 93 P5062-5
(0.3 m)
The conversion cable can be used for connecting this controller to the optional teaching box [LEC-T1] offered with the LEC series.

[^14]
Step Motor Controller Series JXCE1/91/P1/D1/L1 (ϵ © ${ }^{\text {on }}$

How to Order

Actuator + Controller

LEH16B-100-R1 CD17T

Actuator type

Refer to "How to Order" in the actuator catalogue available at www.smc.eu. For compatible actuators, refer to the table below. Example: LEH16B-100B-R1C917

Electric Actuator/Rod Series LEY

Electric Actuator/Guide Rod Series LEYG
Electric Actuator/Slider Series LEF
Electric Slide Table Series LES/LESH
Electric Rotary Table Series LER
Electric Actuator/Guide Rod Slider Series LEL
Electric Actuator/Miniature Series LEPY/LEPS
Electric Gripper Series LEH
Electric Actuator/Low-Profile Slider Series LEM

* Only the step motor type is applicable.

©Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LE series and the JXCE1/91/ P1/D1/L1 series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.

Actuator cable type/length

-	Without cable
S1	Standard cable 1.5 m
S3	Standard cable 3 m
S5	Standard cable 5 m
R1	Robotic cable 1.5 m
R3	Robotic cable 3 m
R5	Robotic cable 5 m
R8	Robotic cable $8 \mathrm{~m}^{* 1}$
RA	Robotic cable $10 \mathrm{~m}^{* 1}$
RB	Robotic cable $15 \mathrm{~m}^{* 1}$
RC	Robotic cable $20 \mathrm{~m}^{* 1}$

*1 Produced upon receipt of order (Robotic cable only)

* The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable.

Refer to the Web

Catalogue.

For single axis

*1 The DIN rail is not included. It must be ordered separately. (Refer to page 93.)

Option

-	Without option
\mathbf{S}	With straight type DeviceNet ${ }^{\text {TM }}$ communication plug for JXCD1
\mathbf{T}	With T-branch type DeviceNet ${ }^{\text {TM }}$ communication plug for JXCD1

* Select "Nil" for anything other than JXCD1.

Controller JXCD17T-LEFS16B-100

Precautions for blank controllers
(JXC $\square 1 \square \square-\mathrm{BC}$)
A blank controller is a controller to which the customer can write the data of the actuator it is to be combined and used with. Use the dedicated software (JXC-BCW) for dedicated so

- Please download the dedicated software (JXC-BCW) via our website.
- Order the controller setting kit (LEC-W 2) separately to use this software.

SMC website
http://www.smc.eu

Communication protocol

\mathbf{E}	EtherCAT $^{\circledR}$
$\mathbf{9}$	EtherNet/IP $^{\text {TM }}$
\mathbf{P}	PROFINET 2
\mathbf{D}	DeviceNet $^{\text {TM }}$
\mathbf{L}	IO-Link

For single axis
Mounting

$\mathbf{7}$	Screw mounting
$\mathbf{8}^{* 1}$	DIN rail

*1 The DIN rail is not included. It must be ordered separately.
(Refer to page 93.)

- Actuator part number

Without cable specifications and actuator options Example: Enter "LEH16B-100" for the LEH16B-100B-S1 \square.

BC Blank controller*1
*1 Requires dedicated software (JXC-BCW)
-Option

-	Without option
\mathbf{S}	With straight type DeviceNet ${ }^{\text {TM }}$ communication plug for JXCD1
T	With T-branch type DeviceNet $^{\text {TM }}$ communication plug for JXCD1

* Select "Nil" for anything other than JXCD1.

When selecting an electric actuator, refer to the model selection chart of each actuator. Also, for the "Speed-Work Load" graph of the actuator, refer to the LECP6 section on the model selection page of the electric actuators Web Catalogue.

When selecting an electric actuator, refer to the model selection chart of each actuator. Also, for the "Speed-Work Load" graph of the actuator, refer to the LECP6 section on the model selection page of the electric actuators Web Catalogue.

Step Motor Controller Series JXCE1/91/P1/D1/L1

Specifications

Model			JXCE1	JXC91	JXCP1	JXCD1	JXCL1
Network			EtherCAT ${ }^{\text {® }}$	EtherNet/IP ${ }^{\text {TM }}$	PROFINET	DeviceNet ${ }^{\text {TM }}$	IO-Link
Compatible motor			Step motor (Servo/24 VDC)				
Power supply			Power voltage: 24 VDC $\pm 10 \%$				
Current consumption (Controller)			200 mA or less	130 mA or less	200 mA or less	100 mA or less	100 mA or less
Compatible encoder			Incremental A/B phase (800 pulse/rotation)				
		Protocol	EtherCAT ${ }^{\text {®** }}$	EtherNet/IPTM *2	PROFINET*2	DeviceNet ${ }^{\text {™ }}$	IO-Link
	system	Version*1	Conformance Test Record V.1.2.6	Volume 1 (Edition 3.14) Volume 2 (Edition 1.15)	Specification Version 2.32	Volume 1 (Edition 3.14) Volume 3 (Edition 1.13)	Version 1.1 Port Class A
	Communication speed		100 Mbps*2	$10 / 100 \mathrm{Mbps} * 2$ (Automatic negotiation)	$100 \mathrm{Mbps*2}$	125/250/500 kbps	$\begin{gathered} 230.4 \mathrm{kbps} \\ \text { (COM3) } \\ \hline \end{gathered}$
	Configuration file*3		ESI file	EDS file	GSDML file	EDS file	IODD file
	I/O occupation area		Input 20 bytes Output 36 bytes	Input 36 bytes Output 36 bytes	Input 36 bytes Output 36 bytes	Input 4, 10, 20 bytes Output 4, 12, 20, 36 bytes	Input 14 bytes Output 22 bytes
	Terminating resistor		Not included				
Memory			EEPROM				
LED indicator			PWR, RUN, ALM, ERR	PWR, ALM, MS, NS	PWR, ALM, SF, BF	PWR, ALM, MS, NS	PWR, ALM, COM
Cable length [m]			Actuator cable: 20 or less				
Cooling system			Natural air cooling				
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 40 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Insulation resistance [M Ω]			Between all external terminals and the case 50 (500 VDC)				
Weight [g]			220 (Screw mounting) 240 (DIN rail mounting)	210 (Screw mounting) 230 (DIN rail mounting)	220 (Screw mounting) 240 (DIN rail mounting)	210 (Screw mounting) 230 (DIN rail mounting)	190 (Screw mounting) 210 (DIN rail mounting)

*1 Please note that versions are subject to change.
*2 Use a shielded communication cable with CAT5 or higher for the PROFINET, EtherNet/IP ${ }^{\text {TM }}$, and EtherCAT® .
*3 The files can be downloaded from the SMC website: http://www.smc.eu

Trademark

EtherNet/IPTM is a trademark of ODVA.
DeviceNet ${ }^{\text {TM }}$ is a trademark of ODVA.
EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Example of Operation Command

In addition to the step data input of 64 points maximum in each communication protocol, the changing of each parameter can be performed in real time via numerical data defined operation.

* Numerical values other than "Moving force," "Area 1," and "Area 2" can be used to perform operation under numerical instructions from JXCL1.
<Application example> Movement between 2 points

No.	Movement mode	Speed	Position	Acceleration	Deceleration	Pushing force	Trigger LV	Pushing speed	Moving force	Area 1	Area 2	In position
0	1: Absolute	100	10	3000	3000	0	0	0	100	0	0	0.50
1	1: Absolute	100	100	3000	3000	0	0	0	100	0	0	0.50

<Step no. defined operation>

Sequence 1: Servo ON instruction
Sequence 2: Instruction to return to origin
Sequence 3: Specify step data No. 0 to input the DRIVE signal.
Sequence 4: Specify step data No. 1 after the DRIVE signal has been temporarily turned OFF to input the DRIVE signal.

<Numerical data defined operation>

Sequence 1: Servo ON instruction
Sequence 2: Instruction to return to origin
Sequence 3: Specify step data No. 0 and turn ON the input instruction flag (position). Input 10 in the target position. Subsequently the start flag turns ON. Sequence 4: Turn ON step data No. 0 and the input instruction flag (position) to change the target position to 100 while the start flag is ON.

The same operation can be performed with any operation command.

Series JXCE1/91/P1/D1/L1

Dimensions

JXCE1/JXC91

JXC91

Step Motor Controller Series JXCE1/91/P1/D1/L1

JXCL1

DIN rail
AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below.

L Dimensions [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Series JXCE1/91/P1/D1/L1

Options

Controller setting kit JXC-W2

[Contents]

(1) Communication cable
(2) USB cable
(3) Controller setting software

* A conversion cable (P5062-5) is not required.

(1) Communication cable JXC-W2-C

* It can be connected to the controller directly.
(2) USB cable JXC-W2-U
(3) Controller setting software JXC-W2-S * CD-ROM

DIN rail mounting adapter LEC-3-D0

* With 2 mounting screws

This should be used when a DIN rail mounting adapter is mounted onto a screw mounting type controller afterwards.

DIN rail AXT100-DR- \square

* For \square, enter a number from the No. line in the table on page 92. Refer to the dimension drawings on page 92 for the mounting dimensions.

Power supply plug JXC-CPW

* The power supply plug is an accessory.

(6) (5) (4)
(3) (2) (1)
(1) C24V
(4) $O V$
(2) M 24 V
(5) N.C.
(3) EMG
(6) LK RLS

Power supply plug

Terminal name	Function	Details
OV	Common supply (-)	M24V terminal/C24V terminal/EMG terminal/ LK RLS terminal are common (-).
M24V	Motor power supply (+)	Motor power supply (+) of the controller
C24V	Control power supply (+)	Control power supply (+) of the controller
EMG	Stop (+)	Connection terminal of the external stop circuit
LK RLS	Lock release (+)	Connection terminal of the lock release switch

Communication plug connector

For DeviceNet ${ }^{\text {TM }}$
Straight type T-branch type
JXC-CD-S JXC-CD-T

Communication plug connector for DeviceNet ${ }^{\text {TM }}$

Terminal name	Details
V+	Power supply (+) for DeviceNetTM
CAN_H	Communication wire (High)
Drain	Grounding wire/Shielded wire
CAN_L	Communication wire (Low)
V-	Power supply (-) for DeviceNet ${ }^{\text {TM }}$

For IO-Link
Straight type
JXC-CL-S

Communication plug connector for IO-Link

Terminal no.	Terminal name	Details
1	L+	+24 V
2	NC	N/A
3	L-	0 V
4	C/Q	IO-Link signal

■ Conversion cable P5062-5 (Cable length: 300 mm)

* To connect the teaching box (LEC-T1-3 $\square \mathrm{G} \square$) or controller setting kit (LEC-W2) to the controller, a conversion cable is required.

Series JXCE1/91/P1/D1 Precautions Related to Differences in Controller Versions

As the controller version of the JXC series differs, the internal parameters are not compatible.
■ Do not use a version V2.0 or S2.0 or higher controller with parameters lower than version V2.0 or S2.0.
Do not use a version V2.0 or S2.0 or lower controller with parameters higher than version V2.0 or S2.0.
\square Please use the latest version of the JXC-BCW (parameter writing tool).

* The latest version is Ver. 2.0 (as of December 2017).

Identifying Version Symbols

For versions lower than V2.0 and S2.0:

Do not use with controller parameters higher than V2.0 or S2.0.

Applicable models
Series JXCD1 \square
Series JXCP1 \square
Series JXCE1 \square

For versions higher than V2.0 and S2.0:
Do not use with controller parameters lower than V2.0 or S2.0.

Multi-Axis Step Motor Controller

 C R RoHS- Speed tuning control ${ }^{* 1}$ (3 Axes: JXC92 4 Axes: JXC73/83/93)
- Linear/circular interpolation

Linear interpolation

Positioning/pushing operation - Step data input (Max. 2048 points)
-Space saving, reduced wiring - Absolute/relative position coordinate instructions
*1 This controls the speed of the slave axis when the speed of the main axis drops due to the effects of an external force and when a speed difference with the slave axis occurs. This control is not for synchronising the position of the main axis and slave axis.

For 3 Axes Series JXC92

- Etherilet/IP Type
- Width: Approx. 38 \% reduction

For 4 Axes Series JXC73/83/93

- Parallel I/O/

Etherilet/IP Type

- Width: Approx. 18 \% reduction

Series JXC73/83/92/93

Step Data Input: Max. 2048 points

For 3 Axes

3-axis operation can be set collectively in one step.

Step	Axis	Movement mode	Speed	Position	Acceleration	Deceleration	Pushing force	Trigger LV	Pushing speed	Moving force	Area 1	Area 2	In position	Comments
			mm/s	mm	$\mathrm{mm} / \mathrm{s}^{2}$	$\mathrm{mm} / \mathrm{s}^{2}$					mm	mm	mm	
0	Axis 1	ABS	500	100.00	3000	3000	0	85.0	50	100.0	10.0	30.0	0.5	
	Axis 2	ABS	500	100.00	3000	3000	0	85.0	50	100.0	10.0	30.0	0.5	
	Axis 3	ABS	500	100.00	3000	3000	0	85.0	50	100.0	10.0	30.0	0.5	
1	Axis 1	INC	500	200.00	3000	3000	0	85.0	50	100.0	0	0	0.5	
	Axis 2	INC	500	200.00	3000	3000	0	85.0	50	100.0	0	0	0.5	
	Axis 3	INC	500	200.00	3000	3000	0	85.0	50	100.0	0	0	0.5	
+	+		+	+	!	+	+	+	+	!	+	+		
2046	Axis 1	SYN-I	500	100.00	3000	3000	0	0	0	100.0	0	0	0.5	
	Axis 2	SYN-I	0	0.00	0	0	0	0	0	100.0	0	0	0.5	
	Axis 3	SYN-I	0	0.00	0	0	0	0	0	100.0	0	0	0.5	
2047	Axis 1	CIR-R	500	0.00	3000	3000	0	0	0	100.0	0	0	0.5	
	Axis 2	CIR-R	0	50.00	0	0	0	0	0	100.0	0	0	0.5	
	Axis 3 *1		0	0.00	0	0	0	0	0	100.0	0	0	0.5	
	Axis $4 * 1$		0	25.00	0	0	0	0	0	100.0	0	0	0.5	

*1 When circular interpolation (CIR-R, CIR-L, CIR-3) is selected in the movement mode, input the X and Y coordinates in the rotation centre position or input the X and Y coordinates in the passing position.

Movement mode	Pushing operation	Details
Blank	\times	Invalid data (Invalid process)
ABS	\bigcirc	Moves to the absolute coordinate position based on the origin of the actuator
INC	\bigcirc	Moves to the relative coordinate position based on the current position
LIN-A	\times	Moves to the absolute coordinate position based on the origin of the actuator by linear interpolation
LIN-I	\times	Moves to the relative coordinate position based on the current position by linear interpolation
CIR-R*2	\times	With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves in the clockwise direction by circular interpolation. The target position and rotation centre position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis $3 * 1$: Rotation centre position X Axis $4 * 1$: Rotation centre position Y
CIR-L*2	\times	With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves in the counter-clockwise direction by circular interpolation. The target position and rotation centre position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis 3 *1: Rotation centre position X Axis 4 *1: Rotation centre position Y
SYN-I	\times	Moves to the relative coordinate position based on the current position by speed tuning control *3
CIR-3*2	\times	With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves based on the three specified points by circular interpolation. The target position and passing position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis $3 * 1$: Passing position X Axis $4 * 1$: Passing position Y

*2 Performs a circular operation on a plane using Axis 1 and Axis 2
*3 This controls the speed of the slave axis when the speed of the main axis drops due to the effects of an external force and when a speed difference with the slave axis occurs. This control is not for synchronising the position of the main axis and slave axis.

For 4 Axes
 4-axis operation can be set collectively in one step.

Step	Axis	Movement mode	Speed	Position	Acceleration	Deceleration	Positioning/ Pushing	Area 1	Area 2	In position	Comments
			mm/s	mm	$\mathrm{mm} / \mathrm{s}^{2}$	$\mathrm{mm} / \mathrm{s}^{2}$		mm	mm	mm	
0	Axis 1	ABS	100	200.00	1000	1000	0	6.0	12.0	0.5	
	Axis 2	ABS	50	100.00	1000	1000	0	6.0	12.0	0.5	
	Axis 3	ABS	50	100.00	1000	1000	0	6.0	12.0	0.5	
	Axis 4	ABS	50	100.00	1000	1000	0	6.0	12.0	0.5	
1	Axis 1	INC	500	250.00	1000	1000	1	0	0	20.0	
	Axis 2	INC	500	250.00	1000	1000	1	0	0	20.0	
	Axis 3	INC	500	250.00	1000	1000	1	0	0	20.0	
	Axis 4	INC	500	250.00	1000	1000	1	0	0	20.0	
!	!		!	!	!	+	+	!	-	,	
2046	Axis 4	ABS	200	700	500	500	0	0	0	0.5	
2047	Axis 1	ABS	500	0.00	3000	3000	0	0	0	0.5	
	Axis 2	ABS	500	0.00	3000	3000	0	0	0	0.5	
	Axis 3	ABS	500	0.00	3000	3000	0	0	0	0.5	
	Axis 4	ABS	500	0.00	3000	3000	0	0	0	0.5	

Movement mode	Pushing operation	Details
Blank	\times	Invalid data (Invalid process)
ABS	\bigcirc	Moves to the absolute coordinate position based on the origin of the actuator
INC	\bigcirc	Moves to the relative coordinate position based on the current position
LIN-A	\times	Moves to the absolute coordinate position based on the origin of the actuator by linear interpolation
LIN-I	\times	Moves to the relative coordinate position based on the current position by linear interpolation
CIR-R*1	\times	With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves in the clockwise direction by circular interpolation. The target position and rotation centre position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis 3: Rotation centre position X Axis 4: Rotation centre position Y
CIR-L*1	\times	With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves in the counter-clockwise direction by circular interpolation. The target position and rotation centre position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis 3: Rotation centre position X Axis 4: Rotation centre position Y
SYN-I	\times	Moves to the relative coordinate position based on the current position by speed tuning control *2

[^15]
Series JXC92

For 3 Axes System Construction/EtherNet//P ${ }^{\text {™ }}$ Type (JXC92)

[^16]
Multi-Axis Step Motor Controller Series JXC73/83

For 4 Axes System Construction/Parallel I/O (JXC73/83)

Series JXC93

For 4 Axes System Construction/EtherNet/IP ${ }^{\text {Tu }}$ Type (JXC93)

3-Axis Step Motor Controller (Etheri'et/IP Type)

 Series JXC92How to Order
EtherNet/IPTM Type (JXC92)

* Order the actuator separately, including the actuator cable.
* For the "Speed-Work Load" graph of the actuator, refer to the LECPA section on the model selection page of the electric actuators Web Catalogue.

Specifications

*1 Do not use a power supply with inrush current protection for the motor drive power supply.
2 Power consumption depends on the actuator connected. Refer to the actuator specifications for further details.
*4 Applicable to non-magnetising locks

Series JXC92

Dimensions

EtherNet/IPTM Type JXC92

Screw mounting

DIN rail mounting

Controller Details

EtherNet//PTM ${ }^{\text {Ty }}$ Type JXC92

No.	Name	Description	Details
(1)	P1, P2	EtherNet/IPTM ${ }^{\text {TM }}$ communication connector	Connect Ethernet cable.
(2)	NS, MS	Communication status LED	Displays the status of the EtherNet/IP ${ }^{\text {TM }}$ communication
(3)	$\begin{gathered} \text { X100 } \\ \text { X10 } \\ \text { X1 } \end{gathered}$	IP address setting switches	Switch to set the 4th byte of the IP address by X1, X10 and X100.
(4)	PWR	Power supply LED (Green)	Power supply ON: Green turns on Power supply OFF: Green turns off
(5)	RUN	Operation LED (Green)	Running in EtherNet/IPTM: Green turns on Running via USB communication: Green flashes Stopped: Green turns off
(6)	USB	USB connection LED (Green)	USB connected: Green turns on USB not connected: Green turns off
(7)	ALM	Alarm LED (Red)	With alarm: Red turns on Without alarm: Red turns off
(8)	USB	Serial communication connector	Connect to a PC via the USB cable.
(9)	ENC 1	Encoder connector (16 pins)	Axis 1: Connect the actuator cable.
(10)	MOT 1	Motor power connector (6 pins)	
(11)	ENC 2	Encoder connector (16 pins)	Axis 2: Connect the actuator cable.
(12)	MOT 2	Motor power connector (6 pins)	
(13)	ENC 3	Encoder connector (16 pins)	Axis 3: Connect the actuator cable.
(14)	MOT 3	Motor power connector (6 pins)	
(15)	Cl	Control power supply connector *1	Control power supply (+), All axes stop (+), Axis 1 lock release (+), Axis 2 lock release (+), Axis 3 lock release (+), Common (-)
(16)	M PWR	Motor power supply connector *1	Motor power supply (+), Motor power supply (-)

*1 Connectors are included. (Refer to page 108.)

4-Axis Step Motor Controller (Parallel I/O/Etheri'et/IP Type) Series JXC73/83/93

How to Order
Parallel I/O (JXC73/83)

EtherNet/IP ${ }^{\text {TM }}$ Type (JXC93)

Symbol	Mounting
$\mathbf{7}$	Screw mounting
$\mathbf{8}$	DIN rail

4-axis type

Applicable Actuators

Series JXC73/83/93

Specifications

Parallel I/O (JXC73/83)	manual on the SMC website. (Documents/Download --> Instruction Manuals)
Item	Specifications
Number of axes	Max. 4 axes
Compatible motor	Step motor (Servo/24 VDC)
Compatible encoder	Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Power supply *1	Main control power supply Power voltage: 24 VDC ± 10 \% Max. current consumption: 300 mA Motor power supply, Motor control power supply (Common) Power voltage: 24 VDC ± 10 \% Max. current consumption: Based on the connected actuator *2
Parallel input	16 inputs (Photo-coupler isolation)
Parallel output	32 outputs (Photo-coupler isolation)
Serial communication	USB2.0 (Full Speed 12 Mbps)
Memory	Flash-ROM/EEPROM
LED indicator	PWR, RUN, USB, ALM
Lock control	Forced-lock release terminal *3
Cable length	I/O cable: 5 m or less, Actuator cable: 20 m or less
Cooling system	Natural air cooling
Operating temperature range	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (No freezing)
Operating humidity range	90 \% RH or less (No condensation)
Storage temperature range	$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (No freezing)
Storage humidity range	90 \% RH or less (No condensation)
Insulation resistance	Between all external terminals and the case: $50 \mathrm{M} \Omega$ (500 VDC)
Weight	1050 g (Screw mounting), 1100 g (DIN rail mounting)

*1 Do not use a power supply with inrush current protection for the motor drive power and motor control power supply.
*2 Power consumption depends on the actuator connected. Refer to the actuator specifications for further details.
*3 Applicable to non-magnetising locks

EtherNet/IPTM Type (JXC93)

Item		Specifications
Number of axes		Max. 4 axes
Compatible motor		Step motor (Servo/24 VDC)
Compatible encoder		Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Power supply*1		Main control power supply Power voltage: 24 VDC ± 10 \% Max. current consumption: 350 mA Motor power supply, Motor control power supply (Common) Power voltage: 24 VDC ± 10 \% Max. current consumption: Based on the connected actuator *2
	Protocol	EtherNet/IP ${ }^{\text {TM }}$ *4
	Communication speed	$10 \mathrm{Mbps} / 100 \mathrm{Mbps}$ (automatic negotiation)
	Communication method	Full duplex/Half duplex (automatic negotiation)
	Configuration file	EDS file
	Occupied area	Input 16 bytes/Output 16 bytes
	IP address setting range	Manual setting by switches: From 192.168.1.1 to 254, Via DHCP server: Arbitrary address
	Vendor ID	7 h (SMC Corporation)
	Product type	2 Bh (Generic Device)
	Product code	DCh
Serial communication		USB2.0 (Full Speed 12 Mbps)
Memory		Flash-ROM/EEPROM
LED indicator		PWR, RUN, USB, ALM, NS, MS, L/A, 100
Lock control		Forced-lock release terminal *3
Cable length		Actuator cable: 20 m or less
Cooling system		Natural air cooling
Operating temperature range		$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (No freezing)
Operating humidity range		90% RH or less (No condensation)
Storage temperature range		$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (No freezing)
Storage humidity range		90 \% RH or less (No condensation)
Insulation resistance		Between all external terminals and the case: $50 \mathrm{M} \Omega$ (500 VDC)
Weight		1050 g (Screw mounting), 1100 g (DIN rail mounting)
$\begin{aligned} & 1 \mathrm{DO} \\ & 2 \mathrm{Po} \\ & 3 \mathrm{Ap} \\ & 4 \mathrm{Ett} \end{aligned}$	not use a power supply with er consumption depends on licable to non-magnetising lo erNet/IP ${ }^{T M}$ is a trademark of	otection for the motor drive power and motor control power supply. nected. Refer to the actuator specifications for further details.

4-Axis Step Motor Controller Series JXC73/83/93

Dimensions

Parallel I/O JXC73/83

EtherNet/IPTM ${ }^{\text {Type JXC93 }}$

Screw mounting

Screw mounting

DIN rail mounting

DIN rail mounting

Series JXC73/83/93

Controller Details

Parallel I/O JXC73/83

EtherNet/IPTM Type JXC93

No.	Name	Description	Details
(1)	PWR	Power supply LED (Green)	Power supply ON: Green turns on Power supply OFF: Green turns off
(2)	RUN	Operation LED (Green)	Running in parallel I/O: Green turns on Running via USB communication: Green flashes Stopped: Green turns off
(3)	USB	USB connection LED (Green)	USB connected: Green turns on USB not connected: Green turns off
(4)	ALM	Alarm LED (Red)	With alarm: Red turns on Without alarm: Red turns off
(5)	USB	Serial communication	Connect to a PC via the USB cable.
(6)	C PWR	Main control power supply connector (2 pins) *1	Main control power supply (+) (-)
(7)	I/O 1	Parallel I/O connector (40 pins)	Connect to a PLC via the I/O cable.
(8)	I/O 2	Parallel I/O connector (40 pins)	Connect to a PLC via the I/O cable.
(9)	ENC 1	Encoder connector (16 pins)	Axis 1: Connect the actuator cable.
(10)	MOT 1	Motor power connector (6 pins)	
(11)	ENC 2	Encoder connector (16 pins)	Axis 2: Connect the actuator cable.
(12)	MOT 2	Motor power connector (6 pins)	
(13)	CI 12	Motor control power supply connector*1	Motor control power supply (+), Axis 1 stop (+), Axis 1 lock release (+), Axis 2 stop (+), Axis 2 lock release (+)
(14)	M PWR 12	Motor power supply connector*1	For Axis 1, 2. Motor power supply (+), Common (-)
(15)	ENC 3	Encoder connector (16 pins)	Axis 3: Connect the actuator cable.
(16)	MOT 3	Motor power connector (6 pins)	
(17)	ENC 4	Encoder connector (16 pins)	Axis 4: Connect the actuator cable.
(18)	MOT 4	Motor power connector (6 pins)	
(19)	CI 34	Motor control power supply connector *1	Motor control power supply (+), Axis 3 stop (+), Axis 3 lock release (+), Axis 4 stop (+), Axis 4 lock release (+)
(20)	M PWR 3 4	Motor power supply connector *1	For Axis 3, 4. Motor power supply (+), Common (-)

*1 Connectors are included. (Refer to page 108.)

No.	Name	Description	Details
(1)	PWR	Power supply LED (Green)	Power supply ON: Green turns on Power supply OFF: Green turns off
(2)	RUN	Operation LED (Green)	Running in EtherNet/IPTM: Green turns on Running via USB communication: Green flashes Stopped: Green turns off
(3)	USB	USB connection LED (Green)	USB connected: Green turns on USB not connected: Green turns off
(4)	ALM	Alarm LED (Red)	With alarm: Red turns on Without alarm: Red turns off
(5)	USB	Serial communication	Connect to a PC via the USB cable.
(6)	C PWR	Main control power supply connector (2 pins) *1	Main control power supply (+) (-)
(7)	$\begin{gathered} \text { x100 } \\ \text { x10 } \\ \text { x1 } \end{gathered}$	IP address setting switches	Switch to set the 4th byte of the IP address by X1, X10 and X100.
(8)	MS, NS	Communication status LED	Displays the status of the EtherNet/IP ${ }^{\text {TM }}$ communication
(9)	ENC 1	Encoder connector (16 pins)	Axis 1: Connect the actuator cable.
(10)	MOT 1	Motor power connector (6 pins)	
(11)	ENC 2	Encoder connector (16 pins)	Axis 2: Connect the actuator cable.
(12)	MOT 2	Motor power connector (6 pins)	
(13)	CI 12	Motor control power supply connector *1	Motor control power supply (+), Axis 1 stop (+), Axis 1 lock release (+), Axis 2 stop (+), Axis 2 lock release (+)
(14)	M PWR 1 2	Motor power supply connector *1	For Axis 1, 2. Motor power supply (+), Common (-)
(15)	ENC 3	Encoder connector (16 pins)	Axis 3: Connect the actuator cable.
(16)	MOT 3	Motor power connector (6 pins)	
(17)	ENC 4	Encoder connector (16 pins)	Axis 4: Connect the actuator cable.
(18)	MOT 4	Motor power connector (6 pins)	
(19)	CI 34	Motor control power supply connector *1	Motor control power supply (+), Axis 3 stop (+), Axis 3 lock release (+), Axis 4 stop (+), Axis 4 lock release (+)
(20)	M PWR 3 4	Motor power supply connector *1	For Axis 3, 4. Motor power supply (+), Common (-)
(21)	P1, P2	EtherNet/IPTM communication connector	Connect Ethernet cable.

*1 Connectors are included. (Refer to page 108.)

Wiring Example 1

Cable with Main Control Power Supply Connector (For 4 Axes)**1:C PWR 1 pc. ${ }^{\text {For } 4 \text { Axes }} \mathrm{JxC73/83/93}$

Terminal name	Function	Details
+24 V	Main control power supply (+)	Power supply (+) supplied to the main control
$24-0 \mathrm{~V}$	Main control power supply (-)	Power supply (-) supplied to the main control

*1 Part no.: JXC-C1 (Cable length: 1.5 m)

Motor Power Supply Connector (For 3/4 Axes)*2: M PWR			2 pcs.*3 For	$\begin{gathered} \hline \text { For } 3 \text { Axes } \\ \hline \text { JXC92 } \end{gathered}$	For 4 Axes JXC73/83/93
Terminal name	Function	Details			Note
OV	Motor power supply (-)	Power supply (-) sup	to the motor power		$\begin{aligned} & \text { axes } \\ & 22 \end{aligned}$
		The M 24 V terminal, C 2 terminal, and LKRLS ter	4 V terminal, EMG minal are common (-).		$\begin{aligned} & \text { axes } \\ & 73 / 83 / 93 \end{aligned}$
M 24V	Motor power supply (+)	Power supply (+) suppli	ed to the motor power		

*2 Manufactured by PHOENIX CONTACT (Part no.: MSTB2, 5/2-STF-5, 08)
*3 1 pc. for 3 axes (JXC92)

Motor Control Power Supply Connector (For 4 Axes)**: Cl
2 pcs.

Terminal name	Function	Details
C 24V	Motor control power supply (+)	Power supply (+) supplied to the motor control
EMG1/EMG3	Stop (+)	Axis 1/Axis 3: Input (+) for releasing the stop
EMG2/EMG4	Stop (+)	Axis 2/Axis 4: Input (+) for releasing the stop
LKRLS1/LKRLS3	Lock release (+)	Axis 1/Axis 3: Input (+) for releasing the lock
LKRLS2/LKRLS4	Lock release (+)	Axis 2/Axis 4: Input (+) for releasing the lock

*4 Manufactured by PHOENIX CONTACT (Part no.: FK-MC0, 5/5-ST-2, 5)

Control Power Supply Connector (For 3 Axes)*5: Cl 1 pc.

Terminal name	Function	Details
0V	Control power supply (-)	The C 24V terminal, LKRLS terminal, and EMG terminal are common (-).
C 24V	Control power supply (+)	Power supply (+) supplied to the control
LKRLS3	Lock release (+)	Axis 3: Input (+) for releasing the lock
LKRLS2	Lock release (+)	Axis 2: Input (+) for releasing the lock
LKRLS1	Lock release (+)	Axis 1: Input (+) for releasing the lock
EMG	Stop (+)	All axes: Input (+) for releasing the stop

*5 Manufactured by PHOENIX CONTACT (Part no.: FK-MC0, 5/6-ST-2, 5)

Cable with main control power supply connector

Motor power supply connector

Control power supply connector

Series JXC73/83/92/93

Wiring Example 2

Parallel I/O Connector $\begin{array}{ll}\text { * When you connect a PLC to the I/O } 1 \text { or I/O } 2 \text { parallel I/O connector, use the I/O cable (JXC-C2-ロ). } \\ \text { * The wiring changes depending on the type of the parallel I/O (NPN or PNP). }\end{array}$

I/O 1 Wiring example

NPN JXC73

I/O 1 Input Signal

Name	Details
$\begin{aligned} & \text { +COM1 } \\ & \text { +COM2 } \end{aligned}$	Connects the power supply 24 V for input/output signal
INO to IN8	Step data specified Bit No. (Standard: When 512 points are used)
IN9 IN10	Step data specified extension Bit No. (Extension: When 2048 points are used)
SETUP	Instruction to return to origin
HOLD	Operation is temporarily stopped
DRIVE	Instruction to drive
RESET	Alarm reset and operation interruption
SVON	Servo ON instruction

PNP JXC83

+COM1	1
+COM2	21
INO	2
IN1	22
IN2	3
IN3	23
IN4	4
IN5	24
IN6	5
IN7	25
IN8	6
IN9	26
IN10	7
SETUP	27
HOLD	8
DRIVE	28
RESET	9
SVON	29

OUT0	10	Load
OUT1	30	Load
OUT2	11	Load
OUT3	31	Load
OUT4	12	Load
OUT5	32	Load
OUT6	13	Load
OUT7	33	Load
OUT8	14	Load
BUSY (OUT9)	34	Load
AREA (OUT10)	15	Load
SETON	35	Load
INP	16	Load
SVRE	36	Load
*ESTOP	17	Load
*ALARM	37	Load
-COM1	18	
-COM1	19	
-COM1	38	
-COM2	20	
-COM2	39	
-COM2	40	

I/O 1 Output Signal

Name	Details
OUT0 to OUT8	Outputs the step data no. during operation
BUSY (OUT9)	Outputs when the operation of the actuator is in progress
AREA (OUT10)	Outputs when all actuators are within the area output range
SETON	Outputs when the return to origin of all actuators is completed
INP	Outputs when the positioning or pushing of all actuators is completed
SVRE	Outputs when servo is ON
*ESTOP *1	Not output when EMG stop is instructed
*ALARM *1	Not output when alarm is generated
-COM1 -COM2	Connects the power supply 0 V for input/output signal
*1Negative-logic circuit signal	

Multi-Axis Step Motor Controller Series JXC73/83/92/93

Wiring Example 2

Parallel I/O Connector * When you connect a PLC to the I/O 1 or I/O 2 parallel I/O connector, use the I/O cable (JXC-C2- \square). * The wiring changes depending on the type of the parallel I/O (NPN or PNP).

I/O 2 Wiring example

NPN JXC73

I/O 2 Input Signal

Name	Details
+COM3 +COM4	Connects the power supply 24 V for input/output signal
N.C.	Cannot be connected

PNP JXC83

+COM3	1
+COM4	21
N.C. $* 1$	2
N.C. $* 1$	22
N.C. $* 1$	3
N.C. $* 1$	23
N.C. $* 1$	4
N.C. $* 1$	24
N.C. $* 1$	5
N.C. $* 1$	25
N.C. $* 1$	6
N.C. $* 1$	26
N.C. $* 1$	7
N.C. $* 1$	27
N.C. $* 1$	8
N.C. $* 1$	28
N.C. $* 1$	9
N.C. $* 1$	29

*1 Cannot be connected

BUSY1	10	Load
BUSY2	30	Load
BUSY3	11	Load
BUSY4	31	Load
AREA1	12	Load
AREA2	32	Load
AREA3	13	Load
AREA4	33	Load
INP1	14	Load
INP2	34	Load
INP3	15	Load
INP4	35	Load
*ALARM1	16	Load
*ALARM2	36	Load
*ALARM3	17	Load
*ALARM4	37	Load
-COM3	18	
-COM3	19	
-COM3	38	
-COM4	20	
-COM4	39	
-COM4	40	

I/O 2 Output Signal

Name	Details
BUSY1	Busy signal for axis 1
BUSY2	Busy signal for axis 2
BUSY3	Busy signal for axis 3
BUSY4	Busy signal for axis 4
AREA1	Area signal for axis 1
AREA2	Area signal for axis 2
AREA3	Area signal for axis 3
AREA4	Area signal for axis 4
INP1	Positioning or pushing completion signal for axis 1
INP2	Positioning or pushing completion signal for axis 2
INP3	Positioning or pushing completion signal for axis 3
INP4	Positioning or pushing completion signal for axis 4
*ALARM1 *2	Alarm signal for axis 1
*ALARM2 *2	Alarm signal for axis 2
*ALARM3 *2	Alarm signal for axis 3
*ALARM4 *2	Alarm signal for axis 4
-COM3	
-COM4	Connects the power supply 0 V for input/output signal
*2 Negative-logic circuit signal	

[^17]
Series JXC73/83/92/93

Options

Cable with main control power supply connector
 JXC - C1

 For 4 Axes

 For 4 Axes
 JXC73/83/93

Cable length: 1.5 m (Accessory)

Number of cores	2
AWG size	AWG20

I/O cable (1 pc.)

Cable length (L) [m]

$\mathbf{1}$	1.5
3	3
$\mathbf{5}$	5

For 4 aves Jxc73/83

Pin no.	Wire colour						
1	Orange (Black 1)	6	Orange (Black 2)	11	Orange (Black 3)	16	Orange (Black 4)
21	Orange (Red 1)	26	Orange (Red 2)	31	Orange (Red 3)	36	Orange (Red 4)
2	Grey (Black 1)	7	Grey (Black 2)	12	Grey (Black 3)	17	Grey (Black 4)
22	Grey (Red 1)	27	Grey (Red 2)	32	Grey (Red 3)	37	Grey (Red 4)
3	White (Black 1)	8	White (Black 2)	13	White (Black 3)	18	White (Black 4)
23	White (Red 1)	28	White (Red 2)	33	White (Red 3)	38	White (Red 4)
4	Yellow (Black 1)	9	Yellow (Black 2)	14	Yellow (Black 3)	19	Yellow (Black 4)
24	Yellow (Red 1)	29	Yellow (Red 2)	34	Yellow (Red 3)	39	Yellow (Red 4)
5	Pink (Black 1)	10	Pink (Black 2)	15	Pink (Black 3)	20	Pink (Black 4)
25	Pink (Red 1)	30	Pink (Red 2)	35	Pink (Red 3)	40	Pink (Red 4)

DIN rail

For 3 Axes \quad For 4 Axes

AXT100-DR- \square

* For \square, enter a number from the No. line in the table below. Refer to the dimension drawings on pages 103 and 106 for the mounting dimensions.

L Dimension

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting bracket (with 6 mounting screws) For 3 Axes For 4 Axes
 JXC-Z1

This should be used when the DIN rail mounting bracket is mounted onto a screw mounting type controller afterwards.

Options

(1)Controller setting software (CD-ROM)
(2)USB cable (Cable length: 3 m)

Description		Model
1	Controller setting software	JXC-W1-1
(2)	USB cable	JXC-W1-2

Contents

(1) Controller setting software (CD-ROM)*1
(2) USB cable (Cable length: 3 m)

Description		Model
(1)	Controller setting software	JXC-MA1-1
(2)	USB cable	JXC-MA1-2

* Can be ordered separately
(1) Controller setting software

(2)
(A-B type)

Hardware Requirements

PC/AT compatible machine with Windows 7 or Windows 8.1 and USB1.1 or USB2.0 port

* Windows ${ }^{\circledR}$ is a registered trademark of Microsoft Corporation in the United States.
(1)Controller setting software*1

Hardware Requirements

PC/AT compatible machine with Windows 7 or Windows 8.1 and USB1.1 or USB2.0 port
*1 The controller setting software also includes software dedicated for 4 axes.

* Windows ${ }^{\circledR}$ is a registered trademark of Microsoft Corporation in the United States.

Series JXC73/83/92/93

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

LE-CP -1
Cable length (L) [m]

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	$8^{* 1}$
\mathbf{A}	$10^{* 1}$
\mathbf{B}	$15^{* 1}$
\mathbf{C}	$20^{* 1}$

*1 Produced upon receipt of order (Robotic cable only)

With lock and sensor

Cable type

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

LE-CP- ${ }_{\mathrm{A}}^{8} \mathrm{~B} /$ Cable length: $8 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$
(*1 Produced upon receipt of order)

These safety instructions are intended to prevent hazardous situations and／or equipment damage．These instructions indicate the level of potential hazard with the labels of＂Caution，＂＂Warning＂or＂Danger．＂They are all important notes for safety and must be followed in addition to International Standards（ISO／IEC）＊1），and other safety regulations．

© Warning

1．The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications．
Since the product specified here is used under various operating conditions，its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results． The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product．This person should also continuously review all specifications of the product referring to its latest catalogue information，with a view to giving due consideration to any possibility of equipment failure when configuring the equipment．
2．Only personnel with appropriate training should operate machinery and equipment．
The product specified here may become unsafe if handled incorrectly．The assembly， operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced．

3．Do not service or attempt to remove product and machinery／equipment until safety is confirmed．
1．The inspection and maintenance of machinery／equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed．
2．When the product is to be removed，confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut，and read and understand the specific product precautions of all relevant products carefully．
3．Before machinery／equipment is restarted，take measures to prevent unexpected operation and malfunction．
4．Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions．
1．Conditions and environments outside of the given specifications，or use outdoors or in a place exposed to direct sunlight．
2．Installation on equipment in conjunction with atomic energy，railways，air navigation， space，shipping，vehicles，military，medical treatment，combustion and recreation，or equipment in contact with food and beverages，emergency stop circuits，clutch and brake circuits in press applications，safety equipment or other applications unsuitable for the standard specifications described in the product catalogue．
3．An application which could have negative effects on people，property，or animals requiring special safety analysis．
4．Use in an interlock circuit，which requires the provision of double interlock for possible failure by using a mechanical protective function，and periodical checks to confirm proper operation．

\triangle Caution

1．The product is provided for use in manufacturing industries．
The product herein described is basically provided for peaceful use in manufacturing industries．
If considering using the product in other industries，consult SMC beforehand and exchange specifications or a contract if necessary．
If anything is unclear，contact your nearest sales branch
＊1）ISO 4414：Pneumatic fluid power－General rules relating to systems．
ISO 4413：Hydraulic fluid power－General rules relating to systems．
IEC 60204－1：Safety of machinery－Electrical equipment of machines．
（Part 1：General requirements）
ISO 10218－1：Manipulating industrial robots－Safety． etc．

Limited warranty and Disclaimer／ Compliance Requirements

The product used is subject to the following＂Limited warranty and Disclaimer＂and＂Compliance Requirements＂．
Read and accept them before using the product．

Limited warranty and Disclaimer

1．The warranty period of the product is 1 year in service or 1.5 years after the product is delivered，wichever is first．＊2） Also，the product may have specified durability，running distance or replacement parts．Please consult your nearest sales branch．

2．For any failure or damage reported within the warranty period which is clearly our responsibility，a replacement product or necessary parts will be provided． This limited warranty applies only to our product independently，and not to any other damage incurred due to the failure of the product．
3．Prior to using SMC products，please read and understand the warranty terms and disclaimers noted in the specified catalogue for the particular products．
＊2）Vacuum pads are excluded from this 1 year warranty．
A vacuum pad is a consumable part，so it is warranted for a year after it is delivered． Also，even within the warranty period，the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty．

Compliance Requirements

1．The use of SMC products with production equipment for the manufacture of weapons of mass destruction（WMD）or any other weapon is strictly prohibited．
2．The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction．Prior to the shipment of a SMC product to another country，assure that all local rules governing that export are known and followed．

\triangle Caution

SMC products are not intended for use as instruments for legal metrology．
Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology（measurement）laws of each country． Therefore，SMC products cannot be used for business or certification ordained by the metrology（measurement）laws of each country．

Safety Instructions \quad Be sure to read＂Handling Precautions for SMC Products＂（M－E03－3）before using．

SMC Corporation（Europe）							
Austria	용＋43（0）2262622800	www．smc．at	office＠smc．at	Lithuania	요－37052308118	www．smcli．lt	info＠smclt．lt
Belgium	－${ }_{\text {－}}+32$（0） 33551464	www．smcpneumatics．be	info＠smcpneumatics．be	Netherlands	宜＋31（0）205318888	www．smcpneumatics．nl	info＠smcpneumatics．nl
Bulgaria	哑＋359（0）2807670	www．smc．bg	office＠smc．bg	Norway	\％ $\mathrm{m}+4767129020$	www．sme－norge．no	post＠smc－norge．no
Croatia	㿻＋385（0）13707288	www．smc．hr	office＠smc．hr	Poland	‥－48 222119600	www．smc．pl	office＠smc．pl
Czech Republic	으․＋420 541424611	www．smc．cz	office＠smc．cz	Portugal	面＋351226166570	www．smc．eu	postpt＠smc．smces．es
Denmark	\％+4570252900	www．smcdk．com	smc＠smcdk．com	Romania	요T＋40213205111	www．smcromania．ro	smcromania＠smcromania．ro
Estonia	宮＋3726510370	www．smcpneumatics．ee	smc＠smcpneumatics．ee	Russia	․․ +78127185445	www．smc－pneumatik．ru	info＠smc－pneumatik．ru
Finland	曾＋358207513513	www．smc．fi	smcti＠smc．fi	Slovakia	並＋421（0）413213212	www．smc．sk	office＠smc．sk
France	㿻＋33（0）164761000	www．smc－france．fr	info＠smc－france．fr	Slovenia	용＋386（0）73885412	www．smc．si	office＠smc．si
Germany	\％	www．smc．de	info＠smc．de	Spain	요․ +34902184100	www．smc．eu	post＠smc．smces．es
Greece	요＋ 302102717265	www．smchellas．gr	sales＠smchellas．gr	Sweden	缙＋46（0）86031200	www．smc．nu	post＠smc．nu
Hungary	皿＋3623513000	www．smc．hu	office＠smc．hu	Switzerland	皿＋41（0）523963131	www．smc．ch	info＠smc．ch
Ireland	애․ +353 （0）14039000	www．smcpneumatics．ie	sales＠smcpneumatics．ie	Turkey	缅＋902124890440	www．smcpnomatik．com．tr	info＠smcpnomatik．com．tr
Italy	ㅇ․＋39 0292711	www．smcitalia．it	mailbox＠smcitalia．it	UK	용＋44（0）845 1215122	www．smcpneumatics．co．uk	sales＠smcpneumatics．co．uk
Latvia	은＋371 67817700	www．smclv．lv	info＠smclv．lv				

[^0]: *

[^1]: \triangle Caution
 [CE-compliant products]
 EMC compliance was tested by combining the electric actuator LEH series and the controller LEC series.
 The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole. [UL-compliant products]
 When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

[^2]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smc.eu

[^3]: * The dust cover is a consumable part. Please replace as necessary.

[^4]: * Pushing force is one of the values of step data that is input into the controller.

[^5]: * Pushing force is one of the values of step data that is input into the controller.

[^6]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smc.eu

[^7]: * "*ALARM" is expressed as negative-logic circuit.

[^8]: Trademark DeviceNet ${ }^{\text {TM }}$ is a trademark of ODVA. EtherNet/IPTM is a trademark of ODVA.

[^9]: * "*ALARM" is expressed as negative-logic circuit.

[^10]: * Parallel I/O signal is valid in auto mode. While the test function operates at manual mode, only the output is valid.

[^11]: * "*ALARM" is expressed as negative-logic circuit.

[^12]: * Refer to the LECPA series Operation Manual for installation.

[^13]: *1 The "basic parameter" and the "return to origin parameter" are automatically set as the actuator parameters, and the 3 items of data consisting of No. 0 to 2 are automatically set as the step data.

[^14]: *1 A conversion cable is also required for connecting the controller to the LEC-W2. (A conversion cable is not required for the JXC-W2.)

[^15]: *1 Performs a circular operation on a plane using Axis 1 and Axis 2
 *2 This controls the speed of the slave axis when the speed of the main axis drops due to the effects of an external force and when a speed difference with the slave axis occurs. This control is not for synchronising the position of the main axis and slave axis.

[^16]: *1 The connected actuators should be ordered separately. (Refer to the applicable actuators on page 102.)

[^17]: *2 Negative-logic circuit signal

