Electric Actuator

Low-profile/Flat Height 48 mm

Profile reduced by side mounting of motor

Max. stroke: 1000 mm Transfer speed: $1000 \mathrm{~mm} / \mathrm{s}$

LEFB25

No interference with motor, even with large workpieces!

Belt drive
With belt cover

Compatible with sliding bearing and ball bushing bearing

Model	Size	Bearing	Stroke [mm]	Work load (Horizontal) $[\mathrm{kg}]$	Speed [mm/s]	Positioning repeatability [mm]
LEL25M						

Simple construction. Guide type can be selected.
 Max. stroke: 1000 mm Transter speed: 1000 mm

Step Data Input Type series LECP6

Simple Setting to Use Straight Away
 Easy Mode for Simple Setting

If you want to use it right away, select "Easy Mode."

<When a TB (teaching box) is used>

- Simple screen without scrolling promotes ease of setting and operating.
- Pick up an icon from the first screen to select a function.
- Set up the step data and check the monitor on the second screen.

Teaching box screen

- Data can be set with position and speed. (Other conditions are already set.)

Example of setting the step data

It can be registered by "SET" after entering the values.

Example of checking the operation status

Operation status can be checked.

© Normal Mode for Detailed Setting

Select normal mode when detailed setting is required.

- Step data can be set in detail.
- Parameters can be set.
- Signals and terminal status can be monitored. JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.
<When a PC is used> Controller setting software
- Step data setting, parameter setting, monitor, teaching, etc., are indicated in different windows.

<When a TB (teaching box) is used>
.......................................
Multiple step data can be
stored in the teaching box, and
transferred to the controller.
Continuous test operation by
up to 5 step data.
Teaching box screen
Each..
test, monitor, etc.) can be
selected from the main menu.

The actuator and controller are provided as a set. (They can be ordered separately.)
Confirm that the combination of the controller and the actuator is correct.

<Check the following before use.>

(1) Check the actuator labell for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

Controller

Fieldbus Network

Fieldbus-compatible Gateway (GW) Unit

Series LEC-G

© Conversion unit for Fieldbus network and LEC serial communication

© Two methods of operation

Step data input: Operate using preset step data in the controller.
Numerical data input: The actuator operates using values such as position and speed from the PLC.
© Values such as position, speed can be checked on the PLC.

Programless Type series LECP1

No Programming

Capable of setting up an electric actuator operation without using a PC or teaching box

Function

Item	Step data input type LECP6	Programless type LECP1
Step data and parameter setting	- Input from controller setting software (PC) - Input from teaching box	- Select using controller operation buttons
Step data "position" setting	- Input the numerical value from controller setting software (PC) or teaching box - Input the numerical value - Direct teaching - JOG teaching	- Direct teaching - JOG teaching
Number of step data	64 points	14 points
Operation command (I/O signal)	Step No. [IN*] input \Rightarrow [DRIVE] input	Step No. [IN^{*}] input only
Completion signal	[INP] output	[OUT*] output

Setting Items

Item		Contents	Easy mode		Normal mode	Step data input type LECP6	Programless type LECP1*	
		TB	PC	TB•PC				
Step data setting (Excerpt)	Movement MOD		Selection of "absolute position" and "relative position"	\triangle	-	\bigcirc	Set at ABS/INC	Fixed value (ABS)
	Speed	Transfer speed	\bigcirc	\bigcirc	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Select from 16-level	
	Position	[Position]: Target position [Pushing]: Pushing start position	-	\bigcirc	\bigcirc	Set in units of 0.01 mm	Direct teaching JOG teaching	
	Acceleration/Deceleration	Acceleration/deceleration during movement	\bigcirc	\bigcirc	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$	Select from 16-level	
	Pushing force	Rate of force during pushing operation	\bigcirc	\bigcirc	\bigcirc	Set in units of 1%	Select from 3-level (weak, medium, strong)	
	Trigger LV	Target force during pushing operation	\triangle	-	\bigcirc	Set in units of 1%	No setting required (same value as pushing force)	
	Pushing speed	Speed during pushing operation	\triangle	\bigcirc	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$		
	Moving force	Force during positioning operation	\triangle	\bigcirc	-	Set to 100 \%		
	Area output	Conditions for area output signal to turn ON	\triangle	-	-	Set in units of 0.01 mm		
	In position	[Position]: Width to the target position [Pushing]: How much it moves during pushing	\triangle	\bigcirc	\bigcirc	Set to 0.5 mm or more (Units: 0.01 mm)	No setting required	
Parameter setting (Excerpt)	Stroke (+)	+ side limit of position	\times	\times	\bigcirc	Set in units of 0.01 mm		
	Stroke (-)	- side limit of position	\times	\times	-	Set in units of 0.01 mm		
	ORIG direction	Direction of the return to origin can be set.	\times	\times	\bigcirc	Compatible	Compatible	
	ORIG speed	Speed during return to origin	\times	\times	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$		
	ORIG ACC	Acceleration during return to origin	\times	\times	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$	No setting requir	
Test	JOG		-	\bigcirc	-	Continuous operation at the set speed can be tested while the switch is being pressed.	Hold down MANUAL button ($®$ ©) for uniform sending (speed is specified value)	
	MOVE		\times	\bigcirc	\bigcirc	Operation at the set distance and speed from the current position can be tested.	Press MANUAL button (®(৯)) once for sizing operation (speed, sizing amount are specified values)	
	Return to ORIG		-	\bigcirc	\bigcirc	Compatible	Compatible	
	Test drive	Operation of the specified step data	-	-	(Continuous operation)	Compatible	Compatible	
	Forced output	ON/OFF of the output terminal can be tested.	\times	\times	\bigcirc	Compatible	Not compatible	
Monitor	DRV mon	Current position, speed, force and the specified step data can be monitored.	-	\bigcirc	\bigcirc	Compatible		
	In/Out mon	Current ON/OFF status of the input and output terminal can be monitored.	\times	\times	\bigcirc	Compatible		
ALM	Status	Alarm currently being generated can be confirmed.	-	\bigcirc	\bigcirc	Compatible	Compatible (display alarm group)	
	ALM Log record	Alarm generated in the past can be confirmed.	\times	\times	-	Compatible	Not compatible	
File	Save/Load	Step data and parameter can be saved, forwarded and deleted.	\times	\times	\bigcirc	Compatible		
Other	Language	Can be changed to Japanese or English.	-	\bigcirc	-	Compatible		

Δ : Can be set from TB Ver. 2.** (The version information is displayed on the initial screen)

* Programless type LECP1 cannot be used with the teaching box and controller setting kit.

System Construction/General Purpose I/O

System Construction/Fieldbus Network

Power supply for gateway unit 24 VDC ${ }^{\text {Note 1) }}$

Gateway (GW) unit Page 26
Applicable Fieldbus protocols
CC-Link Ver. 2.0
DeviceNet ${ }^{\text {TM }}$
PROFIBUS DP EtherNet/IPTM

* CC-Link Ver

DeviceNet ${ }^{\text {TM }}$
 Cable between branches LEC-CG2- \square

-Branch connector Page 26 LEC-CGD

-Terminating resistor connector 120Ω LEC-CGR
-...-Communication cable Page 26
LEC-CG1- \square

Applicable Fieldbus protocols	Max. number of comedable controllers
CC-Link Ver. 2.0	12
DeviceNetTM	8
PROFIBUS DP	5
EtherNet/IPTM	12

Compatible Controller

Step motor controller (Servo/24 VDC)	Series LECP6

Note 1) Connect the 0 V terminals for both the controller input power supply and gateway unit power supply.
When conformity to UL is required, the electric actuator and controller should be used with a UL 1310 Class 2 power supply.

CAT.ES100-87

Series LEFS

Size	Max. work load $[\mathrm{Kg}]$	Stroke [mm]
$\mathbf{1 6}$	10	Up to 400
$\mathbf{2 5}$	20	Up to 600
$\mathbf{3 2}$	45	Up to 800
$\mathbf{4 0}$	60	Up to 1000

Belt drive Series LEFB

Series LEFB

Size	Max. work load [Kg]	Stroke [mm]
16	1	Up to 1000
25	5	Up to 2000
32	14	Up to 2000

Series LEFS

Size	Max. work load $[\mathrm{Kg}]$	Stroke [mm]
$\mathbf{2 5}$	20	Up to 600
$\mathbf{3 2}$	45	Up to 800
$\mathbf{4 0}$	60	Up to 1000

Series LEFB

Size	Max. work load [Kg]	Stroke [mm]
$\mathbf{2 5}$	5	Up to 2000
32	15	Up to 2500
40	25	Up to 3000

\square

Bail screw drive

Series LEFS

High Rigidity Slider Type AC Servo Motor

Guide Rod Slider Step Motor (senor/24 VDC)

SMC Electric Actuators

Slide Table Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

Features 11

SMC Electric Actuators

Controllers/Driver

Step Data Input Type Series JXC73/83

| | AC Servo Motor |
| :--- | :--- | :--- |
| Pulse Input Type | |
| Series LECSA | |
| Series LECSB | |
| Absolute encoder (LECSB) | |
| Built-in positioning function (LECSA) | |

MECHATROLINK II Type
Series LECYM
MIMECHATROLINK- II

MECHATROLINKIII Type

Series LECYU

MMECHATROLINK-III

SSCNETII/H Type

Series LECSS-T
SSCNETII/H
\qquad

Electric Actuator/Guide Rod Slider Series LEL

Controller LEC

Step Motor (Servo/24 VDC) Type

OElectric Actuator/Guide Rod Slider Series LEL

Model Selection Page 1
How to Order Page 6
Specifications Page 7
Construction Page 8
Dimensions Page 9
Auto Switch Page 10
Specific Product Precautions Page 12
©Step Motor (Servo/24 vDC) Controller
Step Data Input Type/Series LECP6 Page 15
Controller Setting Kit/LEC-W2 Page 23
Teaching Box/LEC-T1 Page 24

Gateway Unit/Series LEC-G
Page 26
Programless Controller/Series LECP1
Page 29
Direct Input Type Controller/Series JXC $\square \mathbf{1}$... Page 36

Selection Procedure

Step 1 Check the work load-speed. Step 2 Check the cycle time. Step 3 Check the allowable moment.

Selection Example
Operating

Step 1 Check the work load-speed. <Speed-Work load graph> (Page 4) Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LEL25LT-500 is temporarily selected based on the graph shown on the right side.

<Speed-Work load graph> (LEL25L/Step motor)

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$
-T1: Acceleration time and T3:
Deceleration time can be obtained by the following equation.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$
-T2: Constant speed time can be found from the following equation.
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{s}]$
-T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.

T4 = 0.3 [s]

Step 3 Check the guide moment.

Based on the above calculation result, the LEL25LT-500 is selected.

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{500-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =1.57[\mathrm{~s}] \\
\mathrm{T} 4 & =0.3[\mathrm{~s}]
\end{aligned}
$$

Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+1.57+0.1+0.3 \\
& =\mathbf{2 . 0 7}[\mathrm{s}]
\end{aligned}
$$

L: Stroke [mm]
...(Operating condition)
V : Speed [mm/s]
...(Operating condition)
a1: Acceleration [mm/s²]
...(Operating condition)
a2: Deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
...(Operating condition)
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is
operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until in position is completed
*This graph shows the amount of allowable overhang (guide unit) when the centre of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to "Calculation of Guide Load Factor" or the Electric Actuator Selection Software for confirmation, http://www.smc.eu

Load overhanging direction
m: Work load [kg]
$\mathrm{L}:$: Overhang to the work load centre of gravity [mm]
为

Horizontal/Bottom mounting

X

Y

Z

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEL
Size: 25
Mounting orientation: Horizontal/Bottom/Wall
Acceleration [mm/s²]: a
Work load [kg]: m
Work load centre position [mm]: Xc/Yc/Zc
2. Select the target graph with reference to the model, size and mounting orientation.
3. Based on the acceleration and work load, obtain the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.

$$
\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z
$$

5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ and $\alpha \mathbf{z}$ is 1 or less.
$\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha \mathbf{z} \leq 1$
When 1 is exceeded, please consider a reduction of acceleration and work load, or a change of the work load centre position and series.

Example

1. Operating conditions

Model: LEL
Size: 25L
Stroke: 500
Mounting orientation: Horizontal
Acceleration [mm/s²]: 3000
Work load [kg]: 4
Work load centre position [mm]: Xc=30, Yc =20, Zc = 100
2. Select three graphs from the top of the right side on page 2 .
3. $L x=120 \mathrm{~mm}, L y=65 \mathrm{~mm}, \mathrm{Lz}=390 \mathrm{~mm}$
4. The load factor for each direction can be obtained as follows.
$\alpha x=30 / 120=0.25$
$\alpha y=20 / 65=0.31$
$\alpha z=100 / 390=0.26$
5. $\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha z=0.82 \leq 1$

Speed-Work Load Graph (Guide)

LEL25M (Horizontal)

LEL25L (Horizontal)

Table Displacement (Reference Value)

* Amount of displacement of the table when the load centre of gravity is located at the table centre in the middle of the stroke.

$1-$

Load centre of gravity located at the centre of the table

Table Displacement (Reference Value)

* Amount of displacement when the load is offset by "L" from the centre of the table.

Electric Actuator/Guide Rod Slider Belt Drive Giep Mooresmezave Series LEL

LEL 25 MT-100 $\square \square-\square 1 / 6 P 1 \square$

2 Bearing type
M \quad Sliding bearing L Ball bushing bearing

Switch rail option

-	Without option
\mathbf{R}	With magnet/switch rail

* After purchashing "-" type, the magnet and switch rail cannot be attached afterwards.

Actuator cable type*1
\bar{S}

- Without cable

R Randard cable
*1) The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2) Fix the motor cable protruding from the actuator to keep it unmovable. For details about fixing method, refer to Wiring/Cables in the Electric Actuators Precautions.
5 Motor option

-	Without option
B	With lock
C	With motor cover*

* When [With lock] is selected, [With motor cover] cannot be selected.
4 Stroke

100	100 mm
to	to
1000	1000 mm
* Refer to the applicable	

8 Actuator cable length [m]

$\mathbf{-}$	Without cable	$\mathbf{8}$	8^{*}
$\mathbf{1}$	1.5	A	10^{*}
$\mathbf{3}$	3	B	15^{*}
$\mathbf{5}$	5	C	20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 2) on page 7.
10 I/O cable length [m]

-	Without cable
1	1.5^{*}
3	3^{*}
5	5^{*}

* When "Without controller" is selected for controller types, I/O cable length cannot be selected.
Actuator cable length [m]

10 I/O cable length [m]
(9) Controller type*

* For details about controllers and compatible
motors, refer to the compatible controllers below.
* DIN rail is not included. Order it separately.

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEL series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components
incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole. [UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Applicable Stroke Table Standard/OProduced upon receipt of order | Model Stroke | $\mathbf{1 0 0}$ | $\mathbf{2 0 0}$ | $\mathbf{3 0 0}$ | $\mathbf{4 0 0}$ | $\mathbf{5 0 0}$ | $\mathbf{6 0 0}$ | $\mathbf{7 0 0}$ | $\mathbf{8 0 0}$ | $\mathbf{9 0 0}$ | 1000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LEL25 | \bigcirc | \bigcirc | \bullet | \ominus | \ominus | \ominus | \bigcirc | \bigcirc | \bigcirc | \bigcirc |

* Consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.

The actuator and controller are provided as a set.
Confirm that the combination of the controller and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number.

This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

LEL25MT-100

(1)

* Refer to the operation manual for using the products. Please download it via our website, http://www.smc.eu

Compatible Controllers

| | Step data
 input type | |
| :--- | :---: | :---: | :---: |
| Type | | |

Series LEL

Step Motor (Servo/24 VDC)

Specifications

Note 1) Strokes shown in () are produced upon receipt of order. Consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.
Note 2) Speed changes according to the work load. Check "Speed-Work Load Graph (Guide)" on page 4. The work load changes according to the stroke and work load mounting condition.
Check "Dynamic Allowable Moment" graph on page 2. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
Note 3) A reference value for correcting an error in reciprocal operation.
Note 4) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both the stroke direction and a perpendicular direction to the stroke. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz , when the actuator was tested in both stroke direction and a perpendicular direction to the stroke. (The test was performed with the actuator in the initial state.)
Note 5) Allowable external resistance is the allowable resistance when flexible moving tube or similar is used.
Note 6) The power consumption (including the controller) is for when the actuator is operating.
Note 7) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during operation.
Note 8) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 9) With lock only
Note 10) For an actuator with lock, add the power consumption for the lock

Actuator Product Weight

Step Motor (Servo/24 VDC)

Construction

A-A (LEL25LT- \square)

A-A (LEL25MT- \square)
(19)

Component Parts

No.	Description	Material	Note
1	Table	Aluminium alloy	Anodised
2	Motor end plate	Aluminium alloy	Anodised
3	End plate	Aluminium alloy	Anodised
4	Motor mount	Aluminium die-cast	Painting
5	Pulley holder	Aluminium alloy	
6	Belt cover	Aluminium alloy	Anodised
7	Guide rod	Carbon steel	Hard chrome Anodised
8	Belt holder	Carbon steel	Chromating
9	Pulley shaft	Stainless steel	
10	Spacer	Aluminium alloy	
11	Belt stopper	Aluminium alloy	Anodised
12	Tension plate	Synthetic resin	"With motor cover" only
13	Motor cover	Synthetic resin	"With motor cover" only
14	Grommet	Aluminium alloy	Anodised
15	Motor pulley	Aluminium alloy	Anodised
16	End pulley	-	
17	Motor	-	
18	Belt	-	
19	Bushing	-	"With magnet/switch rail" only
	Ball bushing bearing	-	
20	Bearing	Carbon steel	
21	Bearing	Aluminium alloy	
22	Hexagon bolt	-	
23	Switch rail		
24	Magnet		

Series LEL

Step Motor (Servo/24 VDC)

Dimensions

LEL25 ${ }_{\mathrm{L}}^{\mathrm{M}} \mathrm{T}$

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.

Model	L	L*	A	B	C	D	E
LEL25MT-100 \square - $\square \square \square \square \square$	272.5	280	210	106	63	3	64
LEL25MT-200 $\square-\square \square \square \square \square$	372.5	380	310	206			
LEL25MT-300 $\square-\square \square \square \square \square$	472.5	480	410	306			
LEL25MT-400 $\square-\square \square \square \square \square$	572.5	580	510	406			
LEL25MT-500 $\square-\square \square \square \square \square$	672.5	680	610	506			
LEL25MT-600 \square - $\square \square \square \square \square$	772.5	780	710	606			
LEL25MT-700 \square - $\square \square \square \square \square$	872.5	880	810	706			
LEL25MT-800 $\square-\square \square \square \square \square$	972.5	980	910	806			
LEL25MT-900 $\square-\square \square \square \square \square$	1072.5	1080	1010	906			
LEL25MT-1000 \square - $\square \square \square \square \square$	1172.5	1180	1110	1006			
LEL25LT-100 \square - $\square \square \square \square \square$	292.5	300	230	108	73	4	82
LEL25LT-200 \square - $\square \square \square \square \square$	392.5	400	330	208			
LEL25LT-300 \square - $\square \square \square \square \square$	492.5	500	430	308			
LEL25LT-400 \square - $\square \square \square \square \square$	592.5	600	530	408			
LEL25LT-500 \square - $\square \square \square \square \square$	692.5	700	630	508			
LEL25LT-600 \square - $\square \square \square \square \square$	792.5	800	730	608			
LEL25LT-700 \square - $\square \square \square \square \square$	892.5	900	830	708			
LEL25LT-800 \square - $\square \square \square \square \square$	992.5	1000	930	808			
LEL25LT-900 \square - $\square \square \square \square \square$	1092.5	1100	1030	908			
LEL25LT-1000 $\square-\square \square \square \square \square$	1192.5	1200	1130	1008			

* With motor cover

Solid State Auto Switch Direct Mounting Style
 D-M9N(V)/D-M9P(V)/D-M9B(V)
 RoHS

Refer to SMC website for details about products conforming to the international standards.

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.

© Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit

Auto Switch Specifications

PLC: Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC	$28 \mathrm{VDC})$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED lights up when turned ON.					
Standards	CE marking, RoHS					
-Lead wires — Oilproof flexible heavy-duty vinyl cord: $\varnothing 2.7 \times 3.2$ ellipse, $0.15 \mathrm{~mm}^{2}$, 2 cores (D-M9B(V)), 3 cores (D-M9N(V)/D-M9P(V))						

Weight

[g]

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length $[\mathrm{m}]$	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

How to Order

Dimensions
[mm]
D-M9 \square

2-Colour Indication Solid State Auto Switch Direct Mounting Style D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

Refer to SMC website for details about products conforming to the international standards.

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.
- The optimum operating range can be determined by the colour of the light. (Red \rightarrow Green \leftarrow Red)

© Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit
 D-M9NW/M9NWV

D-M9PW/M9PWV

D-M9BW/M9BWV

Indicator light/Indication method

Auto Switch Specifications

				PLC: Prog	mable L	c Controller
D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at $10 \mathrm{~mA}(2 \mathrm{~V}$ or less at 40 mA$)$				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range Red LED lights up.Optimum operating range Green LED lights up.					
Standards	CE marking, RoHS					

-Lead wires - Oilproof flexible heavy-duty vinyl cord: ø2.7 x 3.2 ellipse, $0.15 \mathrm{~mm}^{2}$, 2 cores (D-M9BW(V)), 3 cores (D-M9NW(V), D-M9PW(V))
Note) Refer to Best Pneumatics No. 2 for solid state auto switch common specifications.
Weight
[g]

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Lead wire length $[\mathrm{m}]$	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

How to Order

Dimensions

Series LEL

Electric Actuator/Guide Rod Slider Specific Product Precautions 1

Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smc.eu

Design

\triangle Caution

1. Do not apply a load in excess of the operating limit.

Select a suitable actuator by work load and allowable moment. If the product is used outside of the operating limit, the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide, degrading accuracy and shortening the life of the product.
And also when "With magnet/switch rail" option is selected, Auto switch may not detect correctly by the deflection of the guide.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause failure.
3. Because of the guide mechanism type, vibration that comes from an external source may be introduced into the workpiece during operation. Do not use this product in a location where vibration is not allowed.

Handling

\triangle Caution

1. Set the position determination width in the step data to at least 1.
Otherwise, completion signal of in position may not be output.
2. INP output signal
1)

Positioning
operation
When the product comes within the set range by step data [In position], the INP output signal will turn on. Initial value: Set to [1] or higher.

Handling

\triangle Caution

3. Never hit at the stroke end except during return to origin.
When incorrect instructions are inputted, such as using the product outside of the specification limits or operation outside of actual stroke through changes in the controller/driver setting and/or origin position, the table may collide against the stroke end of the actuator. Check these points before use.
If the table collides against the stroke end of the actuator, the guide, belt or internal stopper can be broken. This may lead to abnormal operation.

4. The moving force should be the initial value (100%). If the moving force is set below the initial value, it may cause an alarm.
5. The actual speed of this actuator is affected by the work load.
When selecting a product, check the catalogue for the instructions regarding selection.
6. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
Additional force will cause the displacement of the origin position since it is based on detected motor torque.
7. Do not dent, scratch or cause other damage to the body and table mounting surfaces.
This may cause unevenness in the mounting surface, play in the guide or an increase in the sliding resistance.
8. Do not apply strong impact or an excessive moment while mounting a workpiece.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
9. Keep the flatness of the mounting surface 0.2 mm or less.
Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance.
10. When mounting the product, keep a 40 mm or longer diameter for bends in the cable.
11. Do not hit the table with the workpiece in the positioning operation and positioning range.
12. Hold by the end plates when moving the body. Do not hold the belt cover.

Series LEL

Electric Actuator/Guide Rod Slider Specific Product Precautions 2

Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.

Handling

© Caution

13. When mounting the product, use screws with adequate length and tighten them with adequate torque.
Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

Body fixed

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\varnothing \mathbf{A}$ $[\mathrm{mm}]$	\mathbf{L} $[\mathrm{mm}]$
LEL25	M6	5.2	6.6	35.5

Workpiece fixed

To prevent the workpiece fixing bolts from touching the body, use bolts that are 0.5 mm or shorter than the maximum screw-in depth. If long bolts are used, they can touch the body and cause a malfunction, etc.
14. Do not operate by fixing the table and moving the actuator body.
15. The belt drive actuator cannot be used vertically for applications.
16. Check the specifications for the minimum speed of each actuator.
Otherwise, unexpected malfunctions, such as knocking, may occur.
17. In the case of the belt driven actuator, vibration may occur during operation at speeds within the actuator specifications, this could be caused by the operating conditions. Change the speed setting to a speed that does not cause vibration.

Maintenance			
Ferfing Maintenance frequency Perform maintenance according to the table below. Frequency Appearance check Internal check Belt check Inspection before daily operation \bigcirc - - Inspection every 6 months/1000 km/ 5 million cycles* \bigcirc \bigcirc \bigcirc			

* Select whichever comes first.
- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts.
2. Loose or mechanical play in fixed parts or fixing screws.

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt

Controller/Driver

Series LEC-G

Step Data Input Type Step Motor (Servo/24 VDC) Series LECP6

\triangle Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LE series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

* When controller equipped type is selected when ordering the LE series, you do not need to order this controller.

The controller is sold as single unit after the compatible actuator is set.

Confirm that the combination of the controller and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smc.eu

Precautions on blank controller (LECP6 $\square \square$-BC)

Blank controller is a controller to which the customer can write the data of the actuator to be combined and used. Use the dedicated software (LEC-BCW) for data writing.

- Please download the dedicated software (LEC-BCW) via our website.
- Order the controller setting kit (LEC-W2) separately to use this software.

SMC website
http://www.smc.eu

Specifications

Basic Specifications

Item	LECP6
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power voltage: 24 VDC ± 10 \% Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	11 inputs (Photo-coupler isolation)
Parallel output	13 outputs (Photo-coupler isolation)
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
Lock control	Forced-lock release terminal Note 3)
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M ${ }^{\text {] }}$	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	150 (Screw mounting), 170 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the controller power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details. Note 3) Applicable to non-magnetizing lock.

Step Data Input Type/Step Motor (Servo/24 vDc) Series LECP6

How to Mount
a) Screw mounting (LECP6 $\square \square-\square$)
(Installation with two M4 screws)

b) DIN rail mounting (LECP6 $\square \square \mathrm{D}-\square$) (Installation with the DIN rail)

DIN rail is locked.

Hook the controller on the DIN rail and press the lever of section \mathbf{A} in the arrow direction to lock it.

Note) When size 25 or more of the LE series are used, the space between the controllers should be 10 mm or more.

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions on page17 for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Series LECP6

Dimensions

a) Screw mounting (LECP6 $\square \square-\square$)

b) DIN rail mounting (LECP6 $\square \square \mathrm{D}-\square$)

Step Data Input Type/Step Motor (Servo/24 vDc) Series LECP6

Wiring Example 1

Power Supply Connector: CN1 * Power supply plug is an accessory.
CN1 Power Supply Connector Terminal for LECP6 (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0V	Common supply (-)	M 24V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Control power supply (+)	Control power supply (+) supplied to the controller
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

Power supply plug for LECP6

Wiring Example 2

Parallel I/O Connector: CN5

* When you connect a PLC etc., to the CN5 parallel I/O connector, use the I/O cable (LEC-CN5- \square). * The wiring should be changed depending on the type of the parallel I/O (NPN or PNP).

Wiring diagram

Input Signal

Name	Details
COM +	Connects the power supply 24 V for input/output signal
COM-	Connects the power supply 0 V for input/output signal
IN0 to IN5	Step data specified Bit No.
(Input is instructed in the combination of IN0 to 5.)	
SETUP	Instruction to return to origin
HOLD	Operation is temporarily stopped
DRIVE	Instruction to drive
RESET	Alarm reset and operation interruption
SVON	Servo ON instruction

LECP6P $\square \square-\square$ (PNP)

Output Signal

Name	Details
OUTO to OUT5	Outputs the step data no. during operation
BUSY	Outputs when the actuator is moving
AREA	Outputs within the step data area output setting range
SETON	Outputs when returning to origin
INP	Outputs when target position or target force is reached (Turns on when the positioning or pushing is completed.)
SVRE	Outputs when servo is on
*ESTOP Note)	Not output when EMG stop is instructed
*ALARM Note)	Not output when alarm is generated

Series LECP6

Step Data Setting

Step data setting for positioning

In this setting, the actuator moves toward and stops at the target position.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

Step Data (Positioning)		© : Need to be set. O: Need to be adjusted as required. -: Setting is not required.
Necessity	Item	Details
©	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
©	Speed	Transfer speed to the target position
\bigcirc	Position	Target position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Set 0. (If values 1 to 100 are set, the operation will be changed to the pushing operation.)
-	Trigger LV	Setting is not required.
-	Pushing speed	Setting is not required.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Condition that turns on the INP output signal. When the actuator enters the range of [in position], the INP output signal turns on. (It is unnecessary to change this from the initial value.) When it is necessary to output the arrival signal before the operation is completed, make the value larger.

Step Data Input Type/Step Motor (Servo/24 vDC) Series LECP6

Signal Timing
Return to Origin

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuit.

* "OUT" is output when "DRIVE" is changed from ON to OFF.
(When power supply is applied, "DRIVE" or "RESET" is turned ON or
"*ESTOP" is turned OFF, all of the "OUT" outputs are OFF.)

HOLD

* When the actuator is in the positioning range in the pushing operation, it does not stop even if HOLD signal is input.

[^0]
Series LECP6

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]
LE - CP - $\mathbf{1}$
Cable length (L) [m]

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

* Produced upon receipt of order (Robotic cable only) With lock and sensor

Cable type

-	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{5}^{-3} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

Step Data Input Type/Step Motor (Servo/24 vDC) Series LECP6

Option: I/O Cable

* Conductor size: AWG28
$\stackrel{\text { Controller side }}{ }$

Connector pin no.	Insulation colour	Dot mark	Dot colour
A1	Light brown	\square	Black
A2	Light brown	\square	Red
A3	Yellow	\square	Black
A4	Yellow	\square	Red
A5	Light green	\square	Black
A6	Light green	\square	Red
A7	Grey	\square	Black
A8	Grey	\square	Red
A9	White	\square	Black
A10	White	\square	Red
A11	Light brown	$\square \square$	Black
A12	Light brown	■	Red
A13	Yellow	■	Black

Connector pin no.	Insulation colour	Dot mark	Dot colour
B1	Yellow	■ ■	Red
B2	Light green	$\square \square$	Black
B3	Light green	■ \quad -	Red
B4	Grey	■	Black
B5	Grey	■	Red
B6	White	■	Black
B7	White	■	Red
B8	Light brown	■ ■ ■	Black
B9	Light brown	■■■	Red
B10	Yellow	■■■	Black
B11	Yellow	■■■	Red
B12	Light green	■■■	Black
B13	Light green	■■■	Red
-	Shield		

* Windows ${ }^{\circledR} \mathrm{XP}$, Windows ${ }^{\circledR 7}$ and Windows ${ }^{\circledR 8} 8.1$ are registered trademarks of Microsoft Corporation in the United States.
* Refer to SMC website for version upgrade information, http://www.smc.eu

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and testing of the drive can be performed on the same page.
- Can be used to jog and move at a constant rate.

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

Teaching Box/LEC-T1

How to Order

Standard functions

- Chinese character display
- Stop switch is provided.

Option

- Enable switch is provided.

Specifications

Initial languaged

\mathbf{J}	Japanese
\mathbf{E}	English

-Stop switch

G	Equipped with stop switch

* The displayed language can be changed to English or Japanese.

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range [$\left.{ }^{\circ} \mathrm{C}\right]$	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**) - Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor

Menu Operations Flowchart

Trigger LV, Pushing speed, Moving force, Area 1, Area 2, In position

ALM

Active alarm display Alarm reset

TB setting

Reconnect (Ver. 1.**)
Japanese/English (Ver. 2.**)
Easy/Normal
Set item

Series LEC

Normal Mode

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output)
Monitor	- Drive monitor - Output signal monitor - Input signal monitor - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the controller which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to controller Loads the data which is saved in the teaching box to the controller which is being used for communication. - Delete the saved data. - File protection (Ver. 2.**)
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

Menu
Step data
Parameter
Monitor
Test
ALM
File
TB setting
Reconnect

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the controller

Gateway Unit
 Series LEC-G

How to Order

\triangle Caution

[CE-compliant products] EMC compliance was tested by combining the electric actuator LE series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Specifications

90 or less (No condensation)
-10 to 60 (No freezing)
90 or less (No condensation)
200 (Screw mounting), 220 (DIN rail mounting)

	4 s
oc	
	$(8$
	s

Not included	Not included	Not included	Not included
24 VDC ± 10 \%			
200			
300			
30 VDC 1 A			
Series LECP6, Series LECA6			
$115.2 \mathrm{k} / 230.4 \mathrm{k}$			
12	8 Note 5)	5	12
Power supply conn	unication conn	Power	nector
0 to 40 (No freezing)			
90 or less (No condensation)			
-10 to 60 (No freezing)			
90 or less (No condensation)			
200 (Screw mounting), 220 (DIN rail mounting)			

Power supply voltage [V] ${ }^{\text {Note } 6)}$

Current	Not connected to teaching box

Controller specifications	Applicable controllers
	Communication speed [bps] Note 3)
	Max. number of connectable controllers Note 4)

Accessories

Operating temperature range [${ }^{\circ} \mathrm{C}$]
Operating humidity range [\%RH] Storage temperature range [${ }^{\circ} \mathrm{C}$]
Storage humidity range [\%RH]

Weight [g]

Note 1) Please note that the version is subject to change.
Note 2) Each file can be downloaded from the SMC website, http://www.smc.eu
Note 3) When using a teaching box (LEC-T1-■), set the communication speed to 115.2 kbps .
Note 4) A communication response time for 1 controller is approximately 30 ms .
Refer to "Communication Response Time Guideline" for response times when several controllers are connected.
Note 5) For step data input, up to 12 controllers connectable.
Note 6) When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Series LEC-G

Communication Response Time Guideline
Response time between gateway unit and controllers depends on the number of controllers connected to the gateway unit. For response time, refer to the graph below.

This graph shows delay times between gateway unit and controllers. Fieldbus network delay time is not included.

Dimensions

Screw mounting (LEC-G $\square \square \square$)

Applicable Fieldbus protocol: CC-Link Ver. 2.0

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol: EtherNet/IPTM

For body mounting

DIN rail mounting（LEC－GロロロD）

Applicable Fieldbus protocol：CC－Link Ver． 2.0

＊Mountable on DIN rail（ 35 mm ）

Applicable Fieldbus protocol：PROFIBUS DP

Applicable Fieldbus protocol：DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol：EtherNet／IPтм

DIN rail

AXT100－DR－\square

＊For \square ，enter a number from the＂No．＂line in the table below． Refer to the dimensions above for the mounting dimensions．

L Dimension［mm］

No．	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No．	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Trademark DeviceNet ${ }^{\text {TM }}$ is a trademark of ODVA．EtherNet／IPTM is a trademark of ODVA．

Programless Controller
 Series LECP1

RoHS

How to Order

Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEF series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole. [UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

The controller is sold as single unit after the compatible actuator is set.
Confirm that the combination of the controller and the actuator is correct.

* Refer to the Operation Manual for using the products. Please download it via our website, http://www.smc.eu

Specifications

Basic Specifications

Item	LECP1
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power supply voltage: 24 VDC ± 10 \%, Max. current consumption: 3 A (Peak 5A) Note 2) [Including the motor drive power, control power supply, stop, lock release]
Parallel input	6 inputs (Photo-coupler isolation)
Parallel output	6 outputs (Photo-coupler isolation)
Stop points	14 points (Position number 1 to 14(E))
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
7-segment LED display Note 3)	1 digit, 7-segment display (Red) Figures are expressed in hexadecimal ("10" to "15" in decimal number are expressed as "A" to "F")
Lock control	Forced-lock release terminal Note 4)
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [$\mathrm{M} \Omega$]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	130 (Screw mounting), 150 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the controller input power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the each actuator's operation manual etc. for details.
Note 3) " 10 " to " 15 " in decimal number are displayed as follows in the 7 -segment LED.

Note 4) Applicable to non-magnetizing lock.

Controller Details

No．	Display	Description	Details
（1）	PWR	Power supply LED	Power supply ON／Servo ON ：Green turns on Power supply ON／Servo OFF：Green flashes
（2）	ALM	Alarm LED	With alarm Parameter setting Parns on ：Red flashes
3）	-	Cover	Change and protection of the mode switch （Close the cover after changing switch）
（4）	-	FG	Frame ground（Tighten the bolt with the nut when mounting the controller．Connect the ground wire．）
（5）	-	Mode switch	Switch the mode between manual and auto．
（6）	-	7－segment LED	Stop position，the value set by 8 and alarm information are displayed．
（7）	SET	Set button	Decide the settings or drive operation in Manual mode．
（8）	-	Position selecting switch	Assign the position to drive（1 to 14），and the origin position（15）．
（9）	MANUAL	Manual forward button	Perform forward jog and inching．
（10）	Manual reverse button	Perform reverse jog and inching．	
（11）	SPEED	Forward speed switch	16 forward speeds are available．
（12）	Reverse speed switch	16 reverse speeds are available．	
（13）	ACCEL	Forward acceleration switch	16 forward acceleration steps are available．
（14）	Reverse acceleration switch	16 reverse acceleration steps are available．	
（15）	CN1	Power supply connector	Connect the power supply cable．
（16）	CN2	Motor connector	Connect the motor connector．
（17）	CN3	Encoder connector	Connect the encoder connector．
（18）	CN4	I／O connector	Connect I／O cable．

How to Mount

Controller mounting shown below．

1．Mounting screw（LECP1 $\square \square-\square$ ）

（Installation with two M4 screws）

2．Grounding

Tighten the bolt with the nut when mounting the ground wire as shown below．

Note）When size 25 or more of the LE series are used，the space between the controllers should be 10 mm or more．

© Caution

－M4 screws，cable with crimping terminal and tooth lock washer are not included． Be sure to carry out grounding earth in order to ensure the noise tolerance．
－Use a watchmaker＇s screwdriver of the size shown below when changing position switch（8）and the set value of the speed／acceleration switch（11）to（14）．

> Size End width L: 2.0 to $2.4[\mathrm{~mm}]$ End thickness W: 0.5 to $0.6[\mathrm{~mm}]$

Series LECP1

Dimensions

DIN rail mounting (LEC $\square 1 \square \square \mathrm{D}-\square$)

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5	273
No.	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40		
L	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5		

DIN rail mounting adapter

LEC-1-D0 (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type controller afterwards.

Screw mounting (LEC $\square 1 \square \square-\square$)

厅SMC

Wiring Example 1

Power Supply Connector: CN1 * When you connect a CN1 power supply connector, use the power supply cable (LEC-CK1-1).

CN1 Power Supply Connector Terminal for LECP1

Terminal name	Cable colour	Function	Details
0V	Blue	Common supply (-)	M 24V terminal/C 24V terminal/BK RLS terminal are common (-).
M 24V	White	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Brown	Control power supply (+)	Control power supply (+) supplied to the controller
BK RLS	Black	Lock release (+)	Input (+) for releasing the lock

Power supply cable for LECP1 (LEC-CK1-1)

Wiring Example 2

Parallel I/O Connector: CN4 * When you connect a PLC etc., to the CN4 parallel I/O connector, use the I/O cable (LEC-CK4- \square).

		Power supply 24 VDC for I/O signal
CN4		
COM+	1	\vdash
COM-	2	
OUT0	3	Load
OUT1	4	Load
OUT2	5	Load
OUT3	6	Load -
BUSY	7	Load -
ALARM	8	Load
INO	9	
IN1	10	
IN2	11	
IN3	12	
RESET	13	
STOP	14	

Input Signal

Name	Details			
COM+	Connects the power supply 24 V for input/output signal			
COM-	Connects the power supply 0 V for input/output signal			
INO to IN3	- Instruction to drive (input as a combination of INO to IN3) - Instruction to return to origin (INO to IN3 all ON simultaneously) Example - (instruction to drive for position no. 5)			
	IN3	IN2	IN1	IN0
	OFF	ON	OFF	ON
RESET	Alarm reset and operation interruption During operation: deceleration stop from position at which signal is input (servo ON maintained) While alarm is active: alarm reset			
STOP	Instruction to stop (after maximum deceleration stop, servo OFF)			

Input Signal [INO - IN3] Position Number Chart O: OFF ©: ON

Position number	IN3	IN2	IN1	IN0
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	-	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	-	\bigcirc	\bigcirc
6	\bigcirc	-	-	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10 (A)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 (B)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12 (C)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13 (D)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14 (E)	\bigcirc	-	\bigcirc	\bigcirc
Return to origin	\bigcirc	-	\bigcirc	\bigcirc

PNP

Output Signal

Name	Details			
OUT0 to OUT3	Turns on when the positioning or pushing is completed (Output is instructed in the combination of OUTO to 3.) Example - (operation complete for position no. 3)			
	OUT3	OUT2	OUT1	OUT0
	OFF	OFF	ON	ON
BUSY	Outputs when the actuator is moving			
*ALARM Note)	Not output when alarm is active or servo OFF			

Note) Signal of negative-logic circuit (N.C.)

Output Signal [OUTO - OUT3] Position Number Chart O: OFF ©: ON

Position number	OUT3	OUT2	OUT1	OUTO
1	0	0	0	\bullet
2	0	0	\bullet	0
3	0	0	\bullet	\bullet
4	0	\bullet	0	0
5	0	\bullet	0	\bullet
6	0	\bullet	\bullet	0
7	0	\bullet	\bullet	\bullet
8	\bullet	0	0	0
9	\bullet	0	0	\bullet
$10(\mathrm{~A})$	\bullet	0	\bullet	0
$11(\mathrm{~B})$	\bullet	0	\bullet	\bullet
$12(\mathrm{C})$	\bullet	\bullet	0	0
$13(\mathrm{D})$	\bullet	\bullet	0	\bullet
$14(\mathrm{E})$	\bullet	\bullet	\bullet	0
Return to origin	\bullet	\bullet	\bullet	\bullet

Series LECP1

Signal Timing
(1) Return to Origin

* "*ALARM" is expressed as negative-logic circuit.

(2) Positioning Operation

(3) Cut-off Stop (Reset Stop)

(4) Stop by the STOP Signal

(5) Alarm Reset

[^1]
Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

LE-CP - 1	
Cable length (L) [m]	
1	1.5
3	3
5	5
8	8 *
A	10^{*}
B	$15 *$
C	20*
* Produced upon receipt of order (Robotic cable only)	
	Cable ty

-	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, \mathbf{3} \mathbf{~ m}, 5 \mathrm{~m}$

 (* Produced upon receipt of order)

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

	Cable type
-	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

 (* Produced upon receipt of order)

Series LECP1

Options

[Power supply cable]

LEC-CK1-1

Terminal name	Covered colour	Function
OV	Blue	Common supply (-)
M 24V	White	Motor power supply (+)
C 24V	Brown	Control power supply (+)
BK RLS	Black	Lock release (+)

[I/O cable]

LEC-CK4- \square

Cable length (L) [m]

1	1.5
3	3
$\mathbf{5}$	5

Terminal no.	Insulation colour	Dot mark	Dot colour	Function
1	Light brown	\square	Black	COM+
2	Light brown	\square	Red	COM-
3	Yellow	\square	Black	OUT0
4	Yellow	■	Red	OUT1
5	Light green	\square	Black	OUT2
6	Light green	\square	Red	OUT3
7	Grey	\square	Black	BUSY
8	Grey	\square	Red	ALARM
9	White	\square	Black	IN0
10	White	\square	Red	IN1
11	Light brown	■ ■	Black	IN2
12	Light brown	$\square \square$	Red	IN3
13	Yellow	$\square \square$	Black	RESET
14	Yellow	■ ■	Red	STOP

[^2]

5 types of communication protocols

New IO-Link
EtherCAT. ${ }^{*}$

 H
DeviceNet

Etherivet/IP

Slider type
Series LFF
Series LEF

Rotary table Series LER

Guide rod slider Series LEL

Low-profile slider type
Series LEM

Miniature type Series LEPY/LEPS

Series JXCE1/91/P1/D1/L1

Two types of operation command

Step no. defined operation: Operate using the preset step data in the controller.
Numerical data defined operation: The actuator operates using values such as position and speed from the PLC.

Numerical monitoring available

Numerical information, such as the current speed, current position, and alarm codes, can be monitored on the PLC.

Transition wiring of communication cables

Two communication ports are provided.

* For the DeviceNet ${ }^{\text {TM }}$ type, transition wiring is possible using a branch connector.
* 1 to 1 in the case of IO-Link

IO-Link communication can be performed.

The data storage function eliminates the need for troublesome resetting of step data and parameters when changing over the controller.

IO-Link is an open communication interface technology between the sensor/actuator and the I/O terminal that is an international standard, IEC61131-9.

Application

System Construction

Series LEPY/LEPS

(Accessory)

Options

- Teaching box
(With 3 m cable) LEC-T1-3EG \square

- Controller setting kit p. 43

Controller setting kit
(A communication cable, USB cable, and controller setting software (CD-ROM) are included.)

Step Motor Controller Series JXCE1/91/P1/D1/L1 (ϵ © ${ }^{\text {on }}$

How to Order

Actuator + Controller

LEL16B-100-R1 CD17T

Actuator type

Refer to "How to Order" in the actuator catalogue available at www.smc.eu. For compatible actuators, refer to the table below. Example: LEL16B-100B-R1C917

Electric Actuator/Rod Series LEY
Electric Actuator/Guide Rod Series LEYG
Electric Actuator/Slider Series LEF
Electric Slide Table Series LES/LESH
Electric Rotary Table Series LER
Electric Actuator/Guide Rod Slider Series LEL
Electric Actuator/Miniature Series LEPY/LEPS
Electric Gripper Series LEH
Electric Actuator/Low-Profile Slider Series LEM

* Only the step motor type is applicable.

©Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LE series and the JXCE1/91/ P1/D1/L1 series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.

Actuator cable type/length

-	Without cable
S1	Standard cable 1.5 m
S3	Standard cable 3 m
S5	Standard cable 5 m
R1	Robotic cable 1.5 m
R3	Robotic cable 3 m
R5	Robotic cable 5 m
R8	Robotic cable $8 \mathrm{~m}^{* 1}$
RA	Robotic cable $10 \mathrm{~m}^{* 1}$
RB	Robotic cable $15 \mathrm{~m}^{* 1}$
RC	Robotic cable $20 \mathrm{~m}^{* 1}$

*1 Produced upon receipt of order (Robotic cable only)

* The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable.

Refer to the Web

Catalogue.

\mathbf{E}	EtherCAT $^{\circledR}$
$\mathbf{9}$	EtherNet/IP $^{\text {TM }}$
\mathbf{P}	PROFINET 2
\mathbf{D}	DeviceNet
\mathbf{L}	IO-Link

For single axis

*1 The DIN rail is not included. It must be ordered separately. (Refer to page 43.)

Option

-	Without option
\mathbf{S}	With straight type DeviceNet ${ }^{\text {TM }}$ communication plug for JXCD1
\mathbf{T}	With T-branch type DeviceNet ${ }^{\text {TM }}$ communication plug for JXCD1

* Select "Nil" for anything other than JXCD1.

Controller

Precautions for blank controllers
(JXC $\square 1 \square \square-\mathrm{BC}$)
A blank controller is a controller to which the customer can write the data of the actuator it is to be combined and used with. Use the dedicated software (JXC-BCW) for data writing.

- Please download the dedicated software (JXC-BCW) via our website.
Order the controller setting kit (LEC-W 2) separately to use this software.

SMC website
http://www.smc.eu

\section*{| $\mathbf{J X C}$ |
| :---: |
| $\begin{array}{c}\text { munication } \\ \text { protocol }\end{array}$ |
| EtherCAT® |
| EtherNet/IPTM |
| PROFINET |
| DeviceNet ${ }^{\text {TM }}$ |
| IO-Link |}

For single axis

Mounting

$\mathbf{7}$	Screw mounting
$\mathbf{8}^{* 1}$	DIN rail

*1 The DIN rail is not included. It must be ordered separately.
(Refer to page 43.)

When selecting an electric actuator, refer to the model selection chart of each actuator. Also, for the "Speed-Work Load" graph of the actuator, refer to the LECP6 section on the model selection page of the electric actuators Web Catalogue.

Step Motor Controller Series JXCE1/91/P1/D1/L1

Specifications

Model			JXCE1	JXC91	JXCP1	JXCD1	JXCL1
Network			EtherCAT ${ }^{\text {® }}$	EtherNet/IPTM	PROFINET	DeviceNet ${ }^{\text {TM }}$	IO-Link
Compatible motor			Step motor (Servo/24 VDC)				
Power supply			Power voltage: $24 \mathrm{VDC} \pm 10$ \%				
Current consumption (Controller)			200 mA or less	130 mA or less	200 mA or less	100 mA or less	100 mA or less
Compatible encoder			Incremental A/B phase (800 pulse/rotation)				
		Protocol	EtherCAT ${ }^{\text {®*2 }}$	EtherNet/IPTM*2	PROFINET*2	DeviceNet ${ }^{\text {™ }}$	IO-Link
	system	Version*1	Conformance Test Record V.1.2.6	Volume 1 (Edition 3.14) Volume 2 (Edition 1.15)	Specification Version 2.32	Volume 1 (Edition 3.14) Volume 3 (Edition 1.13)	Version 1.1 Port Class A
	Communication speed		100 Mbps*2	10/100 Mbps*2 (Automatic negotiation)	100 Mbps*2	125/250/500 kbps	$\begin{gathered} 230.4 \mathrm{kbps} \\ (\mathrm{COM} 3) \\ \hline \end{gathered}$
	Configuration file*3		ESI file	EDS file	GSDML file	EDS file	IODD file
	I/O occupation area		Input 20 bytes Output 36 bytes	Input 36 bytes Output 36 bytes	Input 36 bytes Output 36 bytes	Input 4, 10, 20 bytes Output 4, 12, 20, 36 bytes	Input 14 bytes Output 22 bytes
	Terminating resistor		Not included				
Memory			EEPROM				
LED indicator			PWR, RUN, ALM, ERR	PWR, ALM, MS, NS	PWR, ALM, SF, BF	PWR, ALM, MS, NS	PWR, ALM, COM
Cable length [m]			Actuator cable: 20 or less				
Cooling system			Natural air cooling				
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 40 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Insulation resistance [M /]			Between all external terminals and the case 50 (500 VDC)				
Weight [g]			220 (Screw mounting) 240 (DIN rail mounting)	210 (Screw mounting) 230 (DIN rail mounting)	220 (Screw mounting) 240 (DIN rail mounting)	210 (Screw mounting) 230 (DIN rail mounting)	190 (Screw mounting) 210 (DIN rail mounting)

*1 Please note that versions are subject to change.
*2 Use a shielded communication cable with CAT5 or higher for the PROFINET, EtherNet/IP ${ }^{\text {TM }}$, and EtherCAT® .
*3 The files can be downloaded from the SMC website: http://www.smc.eu

Trademark

EtherNet/IPTM is a trademark of ODVA.
DeviceNet ${ }^{T M}$ is a trademark of ODVA.
EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Example of Operation Command

In addition to the step data input of 64 points maximum in each communication protocol, the changing of each parameter can be performed in real time via numerical data defined operation.

* Numerical values other than "Moving force," "Area 1," and "Area 2" can be used to perform operation under numerical instructions from JXCL1.
<Application example> Movement between 2 points

No.	Movement mode	Speed	Position	Acceleration	Deceleration	Pushing force	Trigger LV	Pushing speed	Moving force	Area 1	Area 2	In position
0	1: Absolute	100	10	3000	3000	0	0	0	100	0	0	0.50
1	1: Absolute	100	100	3000	3000	0	0	0	100	0	0	0.50

<Step no. defined operation>

Sequence 1: Servo ON instruction
Sequence 2: Instruction to return to origin
Sequence 3: Specify step data No. 0 to input the DRIVE signal.
Sequence 4: Specify step data No. 1 after the DRIVE signal has been temporarily turned OFF to input the DRIVE signal.

<Numerical data defined operation>

Sequence 1: Servo ON instruction
Sequence 2: Instruction to return to origin
Sequence 3: Specify step data No. 0 and turn ON the input instruction flag (position). Input 10 in the target position. Subsequently the start flag turns ON. Sequence 4: Turn ON step data No. 0 and the input instruction flag (position) to change the target position to 100 while the start flag is ON.

The same operation can be performed with any operation command.

Series JXCE1/91/P1/D1/L1

Dimensions

JXCE1/JXC91

JXC91

Step Motor Controller Series JXCE1/91/P1/D1/L1

DIN rail
AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below.

L Dimensions [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Series JXCE1/91/P1/D1/L1

Options

Controller setting kit JXC-W2

[Contents]

(1) Communication cable
(2) USB cable
(3) Controller setting software

* A conversion cable (P5062-5) is not required.

(1) Communication cable JXC-W2-C

* It can be connected to the controller directly.
(2) USB cable JXC-W2-U
(3) Controller setting software JXC-W2-S * CD-ROM

DIN rail mounting adapter LEC-3-D0

* With 2 mounting screws

This should be used when a DIN rail mounting adapter is mounted onto a screw mounting type controller afterwards.

DIN rail AXT100-DR- \square

* For \square, enter a number from the No. line in the table on page 104. Refer to the dimension drawings on page 42 for the mounting dimensions.

Power supply plug JXC-CPW

* The power supply plug is an accessory.

(6) (5) (4)
(3) (2) (1)
(1) C24V
(4) $O V$
(2) $M 24 \mathrm{~V}$
(5) N.C.
(3) EMG
(6) LK RLS

Power supply plug

Terminal name	Function	Details
OV	Common supply (-)	M24V terminal/C24V terminal/EMG terminal/ LK RLS terminal are common (-).
M24V	Motor power supply (+)	Motor power supply (+) of the controller
C24V	Control power supply (+)	Control power supply (+) of the controller
EMG	Stop (+)	Connection terminal of the external stop circuit
LK RLS	Lock release (+)	Connection terminal of the lock release switch

Communication plug connector

For DeviceNet ${ }^{\text {TM }}$
Straight type T-branch type
JXC-CD-S JXC-CD-T

Communication plug connector for DeviceNet ${ }^{\text {TM }}$

Terminal name	Details
V+	Power supply (+) for DeviceNetTM
CAN_H	Communication wire (High)
Drain	Grounding wire/Shielded wire
CAN_L	Communication wire (Low)
V-	Power supply (-) for DeviceNet ${ }^{\text {TM }}$

For IO-Link
Straight type
JXC-CL-S

Communication plug connector for IO-Link

Terminal no.	Terminal name	Details
1	L+	+24 V
2	NC	N/A
3	L-	0 V
4	C/Q	IO-Link signal

■ Conversion cable P5062-5 (Cable length: 300 mm)

* To connect the teaching box (LEC-T1-3 $\square \mathrm{G} \square$) or controller setting kit (LEC-W2) to the controller, a conversion cable is required.

Series JXCE1/91/P1/D1 Precautions Related to Differences in Controller Versions

As the controller version of the JXC series differs, the internal parameters are not compatible.
■ Do not use a version V 2.0 or S 2.0 or higher controller with parameters lower than version V2.0 or S2.0.
Do not use a version V2.0 or S2.0 or lower controller with parameters higher than version V2.0 or S2.0.
■ Please use the latest version of the JXC-BCW (parameter writing tool).

* The latest version is Ver. 2.0 (as of December 2017).

Identifying Version Symbols

For versions lower than V2.0 and S2.0:

Do not use with controller parameters higher than V2.0 or S2.0.

Applicable models
Series JXCD1 \square
Series JXCP1 \square
Series JXCE1 \square

For versions higher than V2.0 and S2.0:
Do not use with controller parameters lower than V2.0 or S2.0.

These safety instructions are intended to prevent hazardous situations and／or equipment damage．These instructions indicate the level of potential hazard with the labels of＂Caution，＂＂Warning＂or＂Danger．＂They are all important notes for safety and must be followed in addition to International Standards（ISO／IEC）＊1），and other safety regulations．

© Warning

1．The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications．
Since the product specified here is used under various operating conditions，its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results． The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product．This person should also continuously review all specifications of the product referring to its latest catalogue information，with a view to giving due consideration to any possibility of equipment failure when configuring the equipment．
2．Only personnel with appropriate training should operate machinery and equipment．
The product specified here may become unsafe if handled incorrectly．The assembly， operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced．

3．Do not service or attempt to remove product and machinery／equipment until safety is confirmed．
1．The inspection and maintenance of machinery／equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed．
2．When the product is to be removed，confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut，and read and understand the specific product precautions of all relevant products carefully．
3．Before machinery／equipment is restarted，take measures to prevent unexpected operation and malfunction．
4．Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions．
1．Conditions and environments outside of the given specifications，or use outdoors or in a place exposed to direct sunlight．
2．Installation on equipment in conjunction with atomic energy，railways，air navigation， space，shipping，vehicles，military，medical treatment，combustion and recreation，or equipment in contact with food and beverages，emergency stop circuits，clutch and brake circuits in press applications，safety equipment or other applications unsuitable for the standard specifications described in the product catalogue．
3．An application which could have negative effects on people，property，or animals requiring special safety analysis．
4．Use in an interlock circuit，which requires the provision of double interlock for possible failure by using a mechanical protective function，and periodical checks to confirm proper operation．

\triangle Caution

1．The product is provided for use in manufacturing industries．
The product herein described is basically provided for peaceful use in manufacturing industries．
If considering using the product in other industries，consult SMC beforehand and exchange specifications or a contract if necessary．
If anything is unclear，contact your nearest sales branch
＊1）ISO 4414：Pneumatic fluid power－General rules relating to systems．
ISO 4413：Hydraulic fluid power－General rules relating to systems．
IEC 60204－1：Safety of machinery－Electrical equipment of machines．
（Part 1：General requirements）
ISO 10218－1：Manipulating industrial robots－Safety． etc．

Limited warranty and Disclaimer／ Compliance Requirements

The product used is subject to the following＂Limited warranty and Disclaimer＂and＂Compliance Requirements＂．
Read and accept them before using the product．

Limited warranty and Disclaimer

1．The warranty period of the product is 1 year in service or 1.5 years after the product is delivered，wichever is first．＊2） Also，the product may have specified durability，running distance or replacement parts．Please consult your nearest sales branch．

2．For any failure or damage reported within the warranty period which is clearly our responsibility，a replacement product or necessary parts will be provided． This limited warranty applies only to our product independently，and not to any other damage incurred due to the failure of the product．
3．Prior to using SMC products，please read and understand the warranty terms and disclaimers noted in the specified catalogue for the particular products．
＊2）Vacuum pads are excluded from this 1 year warranty．
A vacuum pad is a consumable part，so it is warranted for a year after it is delivered． Also，even within the warranty period，the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty．

Compliance Requirements

1．The use of SMC products with production equipment for the manufacture of weapons of mass destruction（WMD）or any other weapon is strictly prohibited．
2．The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction．Prior to the shipment of a SMC product to another country，assure that all local rules governing that export are known and followed．

\triangle Caution

SMC products are not intended for use as instruments for legal metrology．
Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology（measurement）laws of each country． Therefore，SMC products cannot be used for business or certification ordained by the metrology（measurement）laws of each country．

Safety Instructions \quad Be sure to read＂Handling Precautions for SMC Products＂（M－E03－3）before using．

SMC Corporation（Europe）							
Austria	용＋43（0）2262622800	www．smc．at	office＠smc．at	Lithuania	요－37052308118	www．smcli．lt	info＠smclt．lt
Belgium	－${ }_{\text {－}}+32$（0） 33551464	www．smcpneumatics．be	info＠smcpneumatics．be	Netherlands	宜＋31（0）205318888	www．smcpneumatics．nl	info＠smcpneumatics．nl
Bulgaria	哑＋359（0）2807670	www．smc．bg	office＠smc．bg	Norway	\％ $\mathrm{m}+4767129020$	www．sme－norge．no	post＠smc－norge．no
Croatia	㿻＋385（0）13707288	www．smc．hr	office＠smc．hr	Poland	‥－48 222119600	www．smc．pl	office＠smc．pl
Czech Republic	으․＋420 541424611	www．smc．cz	office＠smc．cz	Portugal	面＋351226166570	www．smc．eu	postpt＠smc．smces．es
Denmark	\％+4570252900	www．smcdk．com	smc＠smcdk．com	Romania	요T＋40213205111	www．smcromania．ro	smcromania＠smcromania．ro
Estonia	宮＋3726510370	www．smcpneumatics．ee	smc＠smcpneumatics．ee	Russia	․․ +78127185445	www．smc－pneumatik．ru	info＠smc－pneumatik．ru
Finland	曾＋358207513513	www．smc．fi	smcti＠smc．fi	Slovakia	並＋421（0）413213212	www．smc．sk	office＠smc．sk
France	㿻＋33（0）164761000	www．smc－france．fr	info＠smc－france．fr	Slovenia	용＋386（0）73885412	www．smc．si	office＠smc．si
Germany	\％	www．smc．de	info＠smc．de	Spain	요․ +34902184100	www．smc．eu	post＠smc．smces．es
Greece	요＋ 302102717265	www．smchellas．gr	sales＠smchellas．gr	Sweden	缙＋46（0）86031200	www．smc．nu	post＠smc．nu
Hungary	皿＋3623513000	www．smc．hu	office＠smc．hu	Switzerland	皿＋41（0）523963131	www．smc．ch	info＠smc．ch
Ireland	애․ +353 （0）14039000	www．smcpneumatics．ie	sales＠smcpneumatics．ie	Turkey	缅＋902124890440	www．smcpnomatik．com．tr	info＠smcpnomatik．com．tr
Italy	ㅇ․＋39 0292711	www．smcitalia．it	mailbox＠smcitalia．it	UK	용＋44（0）845 1215122	www．smcpneumatics．co．uk	sales＠smcpneumatics．co．uk
Latvia	은＋371 67817700	www．smclv．lv	info＠smclv．lv				

[^3]1st printing WR printing WR 00 Printed in Spain
Specifications are subject to change without prior notice and any obligation on the part of the manufacturer．

[^0]: * "*ALARM" is expressed as negative-logic circuit.

[^1]: * "*ALARM" is expressed as negative-logic circuit.

[^2]: * Parallel I/O signal is valid in auto mode. While the test function operates at manual mode, only the output is valid.

[^3]: SMC CORPORATION Akihabara UDX 15F，4－14－1，Sotokanda，Chiyoda－ku，Tokyo 101－0021，JAPAN Phone：03－5207－8249 FAX：03－5298－5362

