Electric Slide Tables

Reduced cycle time
Positioning repeatability: $\pm 0.05 \mathrm{~mm}$

Max. pushing force: 180 N
Max. acceleration/deceleration: $5000 \mathrm{~mm} / \mathrm{s}^{2}$
Max. speed: 400 mm/s

Compact Type Series LES

Compared with the LESH, Workpiece mounting surface height: Reduced by up to 12%

LESH16D

Basic type/R type

Compact type New LES16D
Symmetrical type/L type

In-line motor type/D type

High Rigidity Type Series LESH

High rigiditiy
Deflection: $0.016 \mathrm{~mm} *$

* LESH16-50 Load: 25 N

Basic type/R type

Series LESH \square R

Symmetrical type/L type Series LESH \square L

Servo Motor (24 VDC)
Controller/Driver
-Step data input type Series LECP6/LECA6

Step data input type Series JXC73/83

Programless type Series LECP1
Pulse input type Series LECPA
-Fieldbus compatible Network Series JXC $\square 1$ Series JXC92/93

Series LES/LESH

Electric Slide Tables

Compact Type Series LES

Increased by up to bu	\%*	Model	Vertical work load [kg]
		LES16	3.0
* By reducing weight of the moving parts * Compared with the LESH16		LESH16	2.0

Applications

\section*{Light weight
 Reduced by up to 29%
 | Model | Weight [kg] | Reduction amount |
| :---: | :---: | :---: |
| LES16D-100 | 1.20 | Reduced by
 0.50 kg |
| LESH16D-100 | $\mathbf{1 . 7 0}$ | |}

- Max. pushing force: 180 N
- Positioning repeatability: $\pm 0.05 \mathrm{~mm}$
- Possible to reduce cycle time Max. acceleration/deceleration: $5000 \mathrm{~mm} / \mathrm{s}^{2}$ Max. speed: 400 mm/s
- 2 types of motors selectable/Step motor (Servo/24 VDC), Servo motor (24 VDC)

High Rigidity Type Series LESH

High rigidity Deflection: $0.016 \mathrm{~mm}^{*}$ *LESH16-50 Load: 25 N

Integration of the guide rail and the table

 Uses a circulating linear guide.
© Compact, Space-saving
For LESH8 R/L, 50 mm stroke

© Reduced by 61\% in volume*

* Compared with the LESH16-50/LXSH-50
* For R/L type

Motor integrated into the body Built-in motor

2 types of motors selectable

- Step motor (Servo/24 VDC) Ideal for transfer of high load at a low speed and pushing operation
- Servo motor (24 VDC)

Stable at high speed and silent operation

Speed

Manual override screw
Adjustment operation possible when power OFF

Symmetrical Type/L Type

The locations of the table and cable are opposite those of the basic type (R type), expanding design applications.

In-line Motor Type/D Type

Width dimension shortened by up to 45%

Step Data Input Type series LECP6/LECA6

Simple Setting to Use Straight Away

 Easy Mode for Simple SettingIf you want to use it right away, select "Easy Mode."

Step motor

Servo motor (24 VDC)
LECA6

<When a PC is used> Controller setting software

- Step data setting, test operation, move jog and move for the constant rate can be set and operated on one screen.

<When a TB (teaching box) is used>
- Simple screen without scrolling promotes ease of setting and operating.
- Pick up an icon from the first screen to select a function.
- Set up the step data and check the monitor on the second screen.

Teaching box screen

- Data can be set with position and speed. (Other conditions are already set.)

Example of setting the step data

It can be registered by "SET" after entering the values.

Example of checking the operation status

Operation status can be checked.

Step	Axis 1
Step No.	0
Posn	50.00 mm
Speed	$200 \mathrm{~mm} / \mathrm{s}$

IIIIIIIIII | Step | Axis 1 |
| :--- | ---: |
| Step No. | 1 |
| Posn | 80.00 mm |
| Speed | $100 \mathrm{~mm} / \mathrm{s}$ |

Step Data Input Type series LECP6/LECA6

© Normal Mode for Detailed Setting

Select normal mode when detailed setting is required.

- Step data can be set in detail.
- Parameters can be set.
- Signals and terminal status can be monitored. \quad JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

<When a PC is used>

 Controller setting software- Step data setting, parameter setting, monitor, teaching, etc., are indicated in different windows.

The actuator and controller are provided as a set. (They can be ordered separately.)
Confirm that the combination of the controller and the actuator is correct.
<Check the following before use.>
(1) Check the actuator labell for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

Fieldbus Network

Fieldbus-compatible Gateway (GW) Unit

Series LEC-G

© Conversion unit for Fieldbus network and LEC serial communication Applicable Fieldbus protocols: CC-Link[V2 DeviceNet ${ }^{\text {Pquar }}$

Two methods of operation

Step data input: Operate using preset step data in the controller.
Numerical data input:The actuator operates using values such as position and speed from the PLC.
© Values such as position, speed can be checked on the PLC.

Programless Type Series LECP1

No Programming

Capable of setting up an electric actuator operation without using a PC or teaching box

Pulse Input Type series LECPA

A driver that uses pulse signals to allow positioning at any position. The actuator can be controlled from the customers' positioning unit.

Series LECPA

Return-to-origin command signal

Enables automatic return-to-origin action.
With force limit function (Pushing force/Gripping force operation available)
Pushing force/Positioning operation possible by switching signals.

Function

Item	Step data input type LECP6/LECA6	Programless type LECP1	Pulse input type LECPA
Step data and parameter setting	- Input from controller setting software (PC) - Input from teaching box	- Select using controller operation buttons	- Input from controller setting software (PC) - Input from teaching box
Step data "position" setting	- Input the numerical value from controller setting software (PC) or teaching box - Input the numerical value - Direct teaching - JOG teaching	- Direct teaching - JOG teaching	- No "Position" setting required Position and speed set by pulse signal
Number of step data	64 points	14 points	-
Operation command (I/O signal)	Step No. [IN*] input \Rightarrow [DRIVE] input	Step No. [IN*] input only	Pulse signal
Completion signal	[INP] output	[OUT*] output	[INP] output

Setting Items

	Item	Contents	Easy mode		Normal mode	Step data input type LECP6/LECA6	Pulse input type LECPA	Programless type LECP1
			TB	PC	TB•PC			
Step data setting (Excerpt)	Movement MOD	Selection of "absolute position" and "relative position"	\triangle	-	-	Set at ABS/INC	No setting required	Fixed value (ABS)
	Speed	Transfer speed	-	-	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$		Select from 16-level
	Position	[Position]: Target position [Pushing]: Pushing start position	-	\bigcirc	\bigcirc	Set in units of 0.01 mm		Direct teaching JOG teaching
	Acceleration/Deceleration	Acceleration/deceleration during movement	-	-	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$		Select from 16-level
	Pushing force	Rate of force during pushing operation	\bigcirc	\bigcirc	-	Set in units of 1%	Set in units of 1%	Select trom 3-level (weak, medium, strong)
	Trigger LV	Target force during pushing operation	\triangle	\bigcirc	-	Set in units of 1%	Set in units of 1%	No seting required (same value as pussing force)
	Pushing speed	Speed during pushing operation	\triangle	\bigcirc	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	
	Moving force	Force during positioning operation	\triangle	-	-	Set to 100 \%	Set to (Difterent values for each actuator) \%	
	Area output	Conditions for area output signal to turn ON	\triangle	\bigcirc	-	Set in units of 0.01 mm	Set in units of 0.01 mm	
	In position	[Position]: Width to the target position [Pushing]: How much it moves during pushing	\triangle	-	\bigcirc	Set to 0.5 mm or more (Units: 0.01 mm)	Set to (Different values for each actuator) or more (Units: 0.01 mm)	No setting required
Parameter setting (Excerpt)	Stroke (+)	+ side limit of position	\times	\times	\bigcirc	Set in units of 0.01 mm	Set in units of 0.01 mm	
	Stroke (-)	- side limit of position	\times	\times	-	Set in units of 0.01 mm	Set in units of 0.01 mm	
	ORIG direction	Direction of the return to origin can be set.	\times	\times	-	Compatible	Compatible	Compatible
	ORIG speed	Speed during return to origin	\times	\times	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	
	ORIG ACC	Acceleration during return to origin	\times	\times	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	No setting required
Test	JOG		-	-	\bigcirc	Continuous operation at the set speed can be tested while the switch is being pressed.	Continuous operation at the set speed can be tested while the switch is being pressed.	Hold down MANUAL button (®®) for uniform sending (speed is specified value)
	MOVE		\times	-	\bigcirc	Operation at the set distance and speed from the current position can be tested.	Operation at the set distance and speed from the current position can be tested.	Press MANUAL button (®®) once for sizing operation (speed, sizing amount are specified values)
	Return to ORIG		\bigcirc	\bigcirc	\bigcirc	Compatible	Compatible	Compatible
	Test drive	Operation of the specified step data	\bigcirc	-		Compatible	Not compatible	Compatible
	Forced output	ONOFF of the output terminal can be tested.	\times	\times	-	Compatible	Compatible	Not compatible
Monitor	DRV mon	Current position, speed, force and the specified step data can be monitored.	-	-	\bigcirc	Compatible	Compatible	
	In/Out mon	Current ON/OFF status of the input and output terminal can be monitored.	\times	\times	\bigcirc	Compatible	Compatible	
ALM	Status	Alarm currently being generated can be conirimed.	-	\bigcirc	-	Compatible	Compatible	Compatible (display alarm group)
	ALM Log record	Alarm generated in the past can be contirmed.	\times	\times	\bigcirc	Compatible	Compatible	Not compatible
File	Save/Load	Step data and parameter can be saved, forwarded and deleted.	\times	\times	\bigcirc	Compatible	Compatible	
Other	Language	Can be changed to Japanese or English.	-	-	-	Compatible	Compatible	

\triangle : Can be set from TB Ver. 2.** (The version information is displayed on the initial screen)

* Programless type LECP1 cannot be used with the teaching box and controller setting kit.

System Construction/Pulse Signal

System Construction/Fieldbus Network

PLC (Provided by customer)

Communication cable
LEC-CG1-

Gateway (GW) unit Page 65
Options
Applicable Fieldbus protocols
CC-Link Ver. 2.0
DeviceNet ${ }^{\text {TM }}$
PROFIBUS DP EtherNet/IPTM

Page 65

USB cable
PC

-Teaching box Page 63 (With 3 m cable)
LEC-T1-3JG \square

-Controller Page 53

Applicable Fieldous protocols	Max. number of connecerble controllas
CC-Link Ver. 2.0	12
DeviceNet ${ }^{\text {TM }}$	8
PROFIBUS DP	5
EtherNet/P ${ }^{\text {TM }}$	12

Compatible Controller

Step motor controller (Servo/24 VDC)	Series LECP6
Servo motor controller (24 VDC)	Series LECA6

Note 1) Connect the 0 V terminals for both the controller input power supply and gateway unit power supply.
When conformity to UL is required, the electric actuator and controller should be used with a UL 1310 Class 2 power supply.

SMC Electric Actuators

Guide Rod Slider Step Motor (Servo/24 VDC)

CAT.E102

Low Profile Slider Type Step Motor (Sevol/24 vDC)

SMC Electric Actuators

Slide Table Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

Features 13

Controllers/Driver

MECHATROLINK II Type
Series LECYM
MMECHATROLINK-II

MECHATROLINKIII Type

Series LECYU

IIM MECHATROLINK-III

SSCNETII/H Type Series LECSS-T
$\xrightarrow{\text { SSCNFTIIHH}}$

Electric Slide Table/Compact Type Series LES

Electric Slide Table/High Rigidity Type Series LESH

Basic type/ R type	Specifications	Series	Stroke [mm]	Work load [kg]		Speed [mm/s]	Screw lead [mm]	Controller /Driver series	$\begin{array}{\|l} \hline \text { Raderennee } \\ \text { page } \end{array}$
				Horizontel	Vertical				
	Step motor (Servo/24 VDC)	LESH8 \square	50, 75	2	0.5	10 to 200	4	Series LECP6	Page 25
				1	0.25	20 to 400	8		
		LESH16 \square	50, 100	6	2	10 to 200	5	Series LECP1	
				4	1	20 to 400	10		
			50, 100	9	4	10 to 150	8	Series	
,		LESH25-	150	6	2	20 to 400	16	LECPA	
Symmetrical type/ L type	Servo motor (24 VDC)	LESH8 \square A	50,75	2	0.5	10 to 200	4	Series LECA6	
				1	0.25	20 to 400	8		
		LESH16 \square A	50, 100	5	2	10 to 200	5		
				2.5	1	20 to 400	10		
		LESH25 ${ }_{\text {L }}{ }^{\text {A }}$	$\begin{gathered} 50,100 \\ 150 \end{gathered}$	6	2.5	10 to 150	8		
				4	1.5	20 to 400	16		

Controller/Driver LEC

Front matter 1

Type	Series	Compatible motor	Power supply voltage	Parallel I/O		Number of positioning pattern points	Fiefarence
				Input	Output		
Step data input type	LECP6	Step motor (Servo/24 VDC)	$\begin{gathered} 24 \text { VDC } \\ \pm 10 \% \end{gathered}$	11 inputs (Photo-coupler isolation)	13 outputs (Photo-coupler isolation)	64	Page 52
	LECA6	Servo motor (24 VDC)					
Programless type	LECP1	Step motor (Servo/24 VDC)	$\begin{gathered} 24 \text { VDC } \\ \pm 10 \% \end{gathered}$	6 inputs (Photo-coupler isolation)	6 outputs (Photo-coupler isolation)	14	
Pulse input type	LECPA	Step motor (Servo/24 VDC)	$\begin{gathered} 24 \text { VDC } \\ \pm 10 \% \end{gathered}$	5 inputs (Photo-coupler isolation)	9 outputs (Photo-coupler isolation)	-	

SSMC

Step Motor (Servo/24 VDC)/Servo Motor (24 VDC) Type

Electric Slide Table/Compact Type Series LES
Model Selection Page 1
How to Order Page 9
Specifications Page 11
Construction Page 13
Dimensions Page 15
Electric Slide Table/High Rigidity Type Series LESH
Model Selection Page 25
How to Order Page 33
Specifications Page 35
Construction Page 37
Dimensions Page 39
Specific Product Precautions (Series LES/LESH) Page 49
Step Motor (Servo/24 vDC)/Servo Motor (24 vDC) Controller/Driver
Step Data Input Type/series LECP6/LECA6 Page 53Controller Setting Kit/LEC-W2Page 62
Teaching Box/LEC-T1 Page 63
Gateway Unit/Series LEC-G Page 65
Programless Controller/Series LECP1 Page 68
Step Motor Driver/Series LECPA Page 75
Controller Setting Kit/LEC-W2 Page 82Page 83
Direct Input Type Controller/Series JXC $\square 1$ Page 86
Multi-Axis Step Motor Controller/Series JXC73/83/92/93 Page 96

Step 3 Check the allowable moment.

Selection Example

Check the work load-speed. <Speed-Work load graph> (Page 2)
Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LES16 $\square \mathbf{J}-50$ is temporarily selected based on the graph shown on the right side.

Step 2 Check the cycle time.

It is possible to obtain an approximate cycle time by using method 1 , but if a more detailed cycle time is required, use method 2.

Method 1: Check the cycle time graph. (Page 3)
Method 2: Calculation <Speed-Work load graph> (Page 2)
Calculate the cycle time using the following calculation method.
Cycle time:
T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

- T2: Constant speed time can be found from the following equation.
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{s}]$
- T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.
$\mathrm{T} 4=0.15[\mathrm{~s}]$

Step 3 Check the allowable moment. <Static allowable moment> (Page 3) <Dynamic allowable moment> (Page 4) Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Operating conditions
\bullet Workpiece mass: $1[\mathrm{~kg}] \bullet$ Workpiece mounting

- Speed: 220 [mm/s]
- Mounting orientation: Vertical
- Stroke: 50 [mm]
- Acceleration/Deceleration: 5,000 [mm/s ${ }^{2}$]
- Cycle time: 0.5 seconds

LES16 $\square /$ Step Motor Vertical

<Speed-Work load graph>
LES16 $\square /$ Step Motor

<Cycle time>
LES16/Pitching

<Dynamic allowable moment>

Speed-Work Load Graph (Guide)

Step Motor (Servo/24 VDC)

* The following graph shows the values when moving force is 100%.

LES8 \square

Horizontal

Vertical

LES16 \square

LES25 \square

Servo Motor (24 VDC)

* The following graph shows the values when moving force is 250%.

LES8 \square A
Horizontal

Vertical

LES16 \square A

Horizontal

LES25 ${ }^{\text {R }}$ A

Horizontal

Vertical

Cycle Time (Guide)

Operating Conditions

Acceleration/Deceleration: $5,000 \mathrm{~mm} / \mathrm{s}^{2}$
In position: 0.5

Static Allowable Moment

Model		LES8	LES16	LES25
Pitching	$[\mathrm{N} \cdot \mathrm{m}]$	2	4.8	14.1
Yawing	$[\mathrm{N} \cdot \mathrm{m}]$	2	4.8	14.1
Rolling	$[\mathrm{N} \cdot \mathrm{m}]$	0.8	1.8	4.8

Note 1) This graph shows the amount of allowable overhang when the centre of gravity of the workpiece overhangs in one direction. When the centre of gravity of the workpiece overhangs in two directions, refer to the Electric Actuator Selection Software for confirmation.
Dynamic Allowable Moment Note 2) For static moment as well, use a product below the range in the graph. http://www.smcworld.com
Acceleration/Deceleration - $5,000 \mathrm{~mm} / \mathrm{s}^{2}$

	Load overhanging direction m: Work load [kg] Me: Dynamic allowable moment [$\mathrm{N} \cdot \mathrm{m}$] L : Overhang to the work load centre of gravity [mm]		Model						
			LES8		LES16		LES25		
			$\left\lvert\, \begin{array}{rr} 300 \\ & 250 \\ \underset{\xi}{\xi} & 200 \\ \underset{\mathcal{E}}{\sim} & 150 \\ \beth & 100 \\ & 50 \\ & 0 \\ & 0 \end{array}-\right.$				$\begin{array}{\|cc} & 600 \\ & 500 \\ & 400 \\ \underset{\xi}{\xi} & 300 \\ \hdashline & 200 \\ & 100 \\ & 0 \\ & 0 \end{array}$	1 Work	
			$\left\|\begin{array}{rr} 300 \\ & 250 \\ \underset{\xi}{\xi} & 200 \\ \underset{\Xi}{3} & 150 \\ & 100 \\ & 50 \\ & 0 \end{array}\right\|$		$\left\lvert\, \begin{array}{rr} & 350 \\ & 300 \\ & 250 \\ \underset{\xi}{\xi} & 200 \\ \hdashline & 150 \\ \hdashline & 100 \\ & 50 \\ & 0 \end{array}\right.$		$$	$\begin{gathered} 1 \\ \text { Work } \end{gathered}$	
							$\left\|\begin{array}{cc} & 600 \\ & 500 \\ \Xi & 400 \\ \boldsymbol{E} & 300 \\ \hline & 200 \\ & 100 \end{array}\right\|$	1 Work	
		즐			$\begin{array}{rr} 350 \\ & 300 \\ & 250 \\ \boldsymbol{E} & 200 \\ \underline{E} & 150 \\ \Omega & 100 \\ & 50 \\ & 0 \\ & 0 \\ & 0 \end{array}$				 rk load m [kg]
전		을			350 300 250 \boldsymbol{E} 200 \boldsymbol{E} 150 100 50 0 0		$\begin{array}{\|cc\|} \hline & 600 \\ & 500 \\ \Xi & 400 \\ \underline{E} & 300 \\ 0 & 200 \\ \hline & 100 \\ & 0 \end{array}$	1 Work	
$>$		-			$\begin{array}{rr} & 350 \\ & 300 \\ & 250 \\ \boldsymbol{E} & 200 \\ \boldsymbol{E} & 150 \\ \beth & 100 \\ & 50 \\ & 0 \end{array}$			1 Work	

Check the set value of pushing force.

Selection Example

Operating conditions

•Pushing force: $90[\mathrm{~N}]$	\bullet Mounting orientation: Vertical upward
-Workpiece mass: $1[\mathrm{~kg}]$	•Pushing time + Operation (A): 1.5 seconds
-Speed: $100[\mathrm{~mm} / \mathrm{s}]$	\bullet All cycle time (B): 6 seconds
-Stroke. $100[\mathrm{~mm}]$	

- Stroke: 100 [mm]

Check the required force.

Calculate the approximate required force for pushing operation.
Selection example) • Pushing force: $90[\mathrm{~N}]$
-Workpiece mass: 1 [kg]
Therefore, the approximate required force can be obtained as $90+10=100[\mathrm{~N}]$.
Select the target model based on the approximate required force with reference to the specifications (Pages 11 and 12). Selection example) Based on the specifications,

- Approximate required force: $100[\mathrm{~N}]$
- Speed: 100 [mm/s]

Therefore, the LES25 \square is temporarily selected.
Then, calculate the required force for pushing operation. If the mounting position is vertical upward, add the actuator table weight.
Selection example) Based on the <Table weight>,

- LES25 \square table weight: 0.5 [kg]

Therefore, the required force can be obtained as $100+5=105[\mathrm{~N}]$.

Step 2 Check the set value of pushing force.

<Set value of pushing force-Force graph> (Page 6) Select the target model based on the required force with reference to the <Set value of pushing force-Force graph>, and confirm the set value of pushing force.
Selection example) Based on the graph shown on the right side,

- Required force: 105 [N]

Therefore, the LES25 $\square \mathbf{K}$ is temporarily selected.
This set value of pushing force is 40 [\%].

Step 3 Check the duty ratio.

Confirm the allowable duty ratio based on the set value of pushing force with reference to the <Allowable duty ratio>. Selection example) Based on the <Allowable duty ratio>,

- Set value of pushing force: 40 [\%]

Therefore, the allowable duty ratio can be obtained as 30 [\%].
Calculate the duty ratio for operating conditions, and confirm it does not exceed the allowable duty ratio.
Selection example) •Pushing time + Operation (A): 1.5 seconds - All cycle time (B): 6 seconds

Therefore, the duty ratio can be obtained as $1.5 / 6 \times 100=25$ [\%], and this is the allowable range.

Based on the above calculation result, the LES25 $\square \mathrm{K}-100$ is selected. For allowable moment, the selection procedure is the same as the positioning control.

Table Weight
Table Weight

Model		[kg]				
	30	50	75	100	125	150
LES8	0.06	0.08	0.10	-	-	-
LES16	0.10	0.13	0.18	0.20	-	-
LES25	0.25	0.30	0.36	0.50	0.55	0.59

* If the mounting position is vertical upward, add the table weight.

LES25 $\square /$ Step Motor

<Set value of pushing force-Force graph>

Allowable Duty Ratio

Step Motor (Servo/24 VDC)

Set value of pushing force $(\%)$	Duty ratio $(\%)$	Continuous pushing time (minute)
30	-	-
50 or less	30 or less	5 or less
70 or less	20 or less	3 or less

Servo Motor (24 VDC)

Set value of pushing force (\%)	Duty ratio (\%)	Continuous pushing time (minute)
50	-	-
75 or less	30 or less	5 or less
100 or less	20 or less	3 or less

* The pushing force of the LES8 $\square \mathrm{A}$ is up to 75%.

Set Value of Pushing Force-Force Gragh

Step Motor (Servo/24 VDC)

LES8 \square

LES16 \square

LES25 \square

Servo Motor (24 VDC)
LES8 \square A

LES16 \square A

LES25 ${ }^{\text {R }}$ A

* Set values for the controller.

Model	LES8	LES16	LES25
B side parallelism to A side	0.4 mm		
B side traveling parallelism to A side	Refer to Graph 1.		
C side perpendicularity to A side	0.2 mm		
M dimension tolerance	$\pm 0.3 \mathrm{~mm}$		
W dimension tolerance	$\pm 0.2 \mathrm{~mm}$		

Graph 1 B side traveling parallelism to A side

Model Selection Series LES
 Step Motor (Servo/24 VDC)
 Servo Motor (24 VDC)

Table Deflection (Reference Value)

Pitching moment

Table displacement due to pitch moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LES8

LES16

LES25

Yawing moment

Table displacement due to yaw moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LES8

LES16

LES25

Rolling moment

Table displacement due to roll moment load Table displacement of section A when loads are applied to the section F with the slide table retracted.

LES8

$\mathbf{L r}=80 \mathrm{~mm}$

Electric Slide Table/Compact Type

Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

Series LES

(\in. ${ }^{\text {¢ }}$
RoHS

Multi-Axis Step Motor Controller Compatible Page 96
How to Order

2 Motor mounting position

4 Lead [mm]

Symbol	LES8	LES16	LES25
\mathbf{J}	8	10	16
K	4	5	8

(5) Stroke [mm]

Stroke	30	50	75	100	125	15
LES8	-*	-*	\bullet	-	-	
LES16	-*	-*	\bullet	\bullet		
ES25	\bullet	-	\bullet	-	-	

* R/L type with lock is not available.
6 Motor option

-	Without option
B	With lock

Motor option

7 Body option
-
S

* For R/L type (IP5X equivalent), a scraper is mounted on the rod cover, and gaskets are mounted on both the end covers. For D type, a scraper is mounted on the rod cover.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^0]

Basic type (R type)

Symmetrical type (L type)

In-line motor type (D type)

8 Mounting*

Symbol	Mounting	R type L type	D type
-	Without side holder	\bullet	\bigcirc
\mathbf{H}	With side holder (4 pcs.)	-	\bigcirc

* Refer to page 23 for details.

11 Controller/Driver type*1

-	Without controller/driver	
6N	LECP6/LECA6	NPN
6P	(Step data input type)	PNP
1N	$\begin{gathered} \text { LECP1*2 } \\ \text { (Programless type) } \end{gathered}$	NPN
1P		PNP
AN	$\begin{gathered} \text { LECPA*2 } \\ \text { (Pulse input type) } \end{gathered}$	NPN
AP		PNP

*1 Refer to page 52 for the detailed specifications of the controller/driver.
*2 Only available for the motor type "Step motor."

(9) Actuator cable type*1

-	Without cable
\mathbf{S}	Standard cable*2
\mathbf{R}	Robotic cable (Flexible cable)*3

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2 Only available for the motor type "Step motor."
*3 Fix the motor cable protruding from the actuator to keep it unmovable. For details about fixing method, refer to Wiring/Cables in the Electric Actuators Precautions.

10 Actuator cable length [m]

-	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	3
5	5
8	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 11.

12 I/O cable length [m]**

-	Without cable
1	1.5
3	$3^{* 2}$
5	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 61 (For LECP6/ LECA6), page 74 (For LECP1) or page 81 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.
(13) Controller/Driver mounting

-	Screw mounting
\mathbf{D}	DIN rail mounting*

* DIN rail is not included. Order it separately. Refer to page 54 for details.

Compatible Controllers/Driver

Type	Step data input type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECA6	LECP1	LECPA
Features	Value (Step data) input Standard controller		Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points		14 points	-
Power supply voltage	24 VDC			
Reference page	Page 53		Page 68	Page 75

Specifications

Step Motor (Servo/24 VDC)

Model			LES8 \square		LES16 \square		LES25 \square	
Stroke [mm]			30, 50, 75		30, 50, 75, 100		30, 50, 75, 100, 125, 150	
	Work load [kg] ${ }^{\text {Note 1) }}$	Horizontal	1		3		5	
		Vertical	0.5	0.25	3	1.5	5	2.5
	Pushing force 30 to 70	\% \% [N] ${ }^{\text {Note 2) } 3 \text {) }}$	6 to 15	4 to 10	23.5 to 55	15 to 35	77 to 180	43 to 100
	Speed [mm/s] Note		10 to 200	20 to 400	10 to 200	20 to 400	10 to 200	20 to 400
	Pushing speed [m	m / s]	10 to 20	20	10 to 20	20	10 to 20	20
	Max. acceleration/deceleration [mm/s $\left.{ }^{2}\right]$		5,000					
	Positioning repeatability [mm]		± 0.05					
	Lost motion [mm] Note 4)		0.3 or less					
	Screw lead [mm]		4	8	5	10	8	16
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{\text {Note }}$)		50/20					
	Actuation type		Slide screw + Belt (R/L type), Slide screw (D type)					
	Guide type		Linear guide (Circulating type)					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40					
	Operating humidity range [\%RH]		90 or less (No condensation)					
	Motor size		$\square 20$		$\square 28$		$\square 42$	
은	Motor type		Step motor (Servo/24 VDC)					
\%	Encoder		Incremental A/B phase (800 pulse/rotation)					
O	Rated voltage [V]		24 VDC ± 10 \%					
$\stackrel{0}{6}$	Power consumption [W] Note 6)		18		69		45	
产	Standby power consumption when operating [W] wiee 1		7		15		13	
Ш			35		69		67	
	Type		Non-magnetizing lock					
	Holding force [N]		24	2.5	300	48	500	77
或:	Power consumption [W] ${ }^{\text {Note 10) }}$ Rated voltage [V]		3.5		2.9		5	
			24 VDC ± 10 \%					

Note 1) Speed changes according to the work load. Check "Speed-Work Load Graph (Guide)" on page 2.
Note 2) Pushing force accuracy is $\pm 20 \%$ (F.S.).
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 4) A reference value for correcting an error in reciprocal operation.
Note 5) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 6) The power consumption (including the controller) is for when the actuator is operating.
Note 7) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation.
Note 8) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 9) With lock only
Note 10) For an actuator with lock, add the power consumption for the lock.

Specifications

Servo Motor（24 VDC）

Model			LES8 \square A		LES16 \square A		LES25 ${ }_{\text {R }} \mathbf{A}^{\text {Note 1）}}$	
	Stroke［mm］		30，50， 75		30，50，75， 100		30，50，75，100，125， 150	
	Work load［kg］	Horizontal	1		3		5	
		Vertical	1	0.5	3	1.5	4	2
	Pushing force 50 to $100 \%[\mathrm{~N}]^{\text {Note 2）}}$		7.5 to 11	5 to 7.5	17.5 to 35	10 to 20	31 to 62	19 to 38
	Speed［mm／s］		1 to 200	1 to 400	1 to 200	1 to 400	1 to 200	1 to 400
	Pushing speed［mm／s］		1 to 20					
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］		5，000					
	Positioning repeatability［mm］		± 0.05					
	Lost motion［mm］${ }^{\text {Note 3）}}$		0.3 or less					
	Screw lead［mm］		4	8	5	10	8	16
	Impact／Vibration resistance［m／s／s］${ }^{\text {Note 4）}}$		50／20					
	Actuation type		Slide screw＋Belt（R／L type），Slide screw（D type）					
	Guide type		Linear guide（Circulating type）					
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）					
$\stackrel{\square}{\square}$	Motor size		$\square 20$		$\square 28$		$\square 42$	
을	Motor output［W］		10		30		36	
$\stackrel{\rightharpoonup}{0}$	Motor type		Servo motor（24 VDC）					
－	Encoder（Angular displacement sensor）		Incremental A／B／Z phase（800 pulse／rotation）					
$\frac{\circ}{n}$	Rated voltage［V］		24 VDC ± 10 \％					
은	Power consumption［W］Note 5）		42		68		97	
－	Standby power consumption when operating［W］${ }^{\text {Noie］}}$ ］		8 （Horizontal）／19（Vertical）		9 （Horizontal）／23（Vertical）		16 （Horizontal）／32（Vertical）	
而	Max．instantaneous power consumption［W］${ }^{\text {Noie 7）}}$		71		102		111	
$\stackrel{\square}{5}$	Type		Non－magnetizing lock					
	Holding force［N］Note 8）		24	2.5	300	48	500	77
咎：	Power consumption［W］Note 9） Rated voltage［V］		3.5		2.9		5	
			24 VDC ± 10 \％					

Note 1）LES25DA is not available．
Note 2）The pushing force values for LES8 \square A is 50 to 75% ．Pushing force accuracy is $\pm 20 \%$（F．S．）．
Note 3）A reference value for correcting an error in reciprocal operation．
Note 4）Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．） Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 5）The power consumption（including the controller）is for when the actuator is operating．
Note 6）The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during the operation．Except during the pushing operation．
Note 7）The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply
Note 8）With lock only
Note 9）For an actuator with lock，add the power consumption for the lock．

Weight

Step Motor（Servo／24 VDC），Servo Motor（24 VDC）Common

		Without lock						With lock					
Stroke［mm］		30	50	75	100	125	150	30	50	75	100	125	150
Model	LES8 ${ }_{\text {R }}(\mathrm{A})$	0.45	0.54	0.59	－	－	－	－	－	0.66	－	－	－
	LES16 ${ }_{\text {R }}(\mathrm{A})$	0.91	1.00	1.16	1.24	－	－	－	－	1.29	1.37	－	－
	LES25 ${ }_{\text {L }}(\mathrm{A})$	1.81	2.07	2.41	3.21	3.44	3.68	－	2.34	2.68	3.48	3.71	3.95
	LES8D（A）	0.40	0.52	0.58	－	－	－	0.47	0.59	0.65	－	－	－
	LES16D（A）	0.77	0.90	1.11	1.20	－	－	0.90	1.03	1.25	1.33	－	－
	LES25D	1.82	2.05	2.35	3.07	3.27	3.47	2.08	2.31	2.61	3.33	3.53	3.74

Construction: Basic Type/R Type, Symmetrical Type/L Type

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	-
$\mathbf{2}$	Body	Aluminium alloy	Anodised
$\mathbf{3}$	Table	Stainless steel	Heat treatment + Electroless nickel plated
$\mathbf{4}$	Guide block	Stainless steel	Heat treatment
$\mathbf{5}$	Lead screw	Stainless steel	Heat treatment + Specially treated
$\mathbf{6}$	End plate	Aluminium alloy	Anodised
$\mathbf{7}$	Pulley cover	Synthetic resin	-
$\mathbf{8}$	End cover	Synthetic resin	-
9	Rod	Stainless steel	-
		Structural steel	Electroless nickel plated
$\mathbf{1 0}$	Bearing stopper	Brass	Electroless nickel plated
		(LES25R/L only)	
$\mathbf{1 1}$	Motor plate	Structural steel	-
$\mathbf{1 2}$	Lock nut	Structural steel	Chromate treated
$\mathbf{1 3}$	Socket	Structural steel	Electroless nickel plated
$\mathbf{1 4}$	Lead screw pulley	Aluminium alloy	-
$\mathbf{1 5}$	Motor pulley	Aluminium alloy	-
$\mathbf{1 6}$	Spacer	Stainless steel	LES25R/L \square only
$\mathbf{1 7}$	Origin stopper	Structural steel	Electroless nickel plated
$\mathbf{1 8}$	Bearing	-	-
19	Belt	-	-

No.	Description	Material	Note
$\mathbf{2 0}$	Grommet	Synthetic resin	-
$\mathbf{2 1}$	Sim ring	Structural steel	-
$\mathbf{2 2}$	Stopper	Structural steel	-
$\mathbf{2 3}$	Bushing	-	Dustproof specification only
24	Pulley gasket	NBR	Dustproof specification only
25	End gasket	NBR	Dustproof specification only
$\mathbf{2 6}$	Scraper	NBR	Dustproof specification only
27	Cover	Synthetic resin	-
28	Return guide	Synthetic resin	-
29	Cover support	Stainless steel	-
30	Steel ball	Special steel	-
31	Lock	-	With lock only

Replacement Parts/Belt

Size	Order no.	Note
LES8 \square	LE-D-1-1	Without manual override screw
LES16 \square	LE-D-1-2	-
LES25 \square	LE-D-1-3	-
LES25 $\square \mathbf{A}$	LE-D-1-4	-
LES8 \square	LE-D-1-5	With manual override screw

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 (10 g)
	GR-S-020 (20 g)

Construction: In-line Motor Type/D Type

Shipped together

Component Parts

No.	Description	Material	Note
1	Motor	-	-
2	Body	Aluminium alloy	Anodised
3	Table	Stainless steel	Heat treatment + Electroess nickel paled
4	Guide block	Stainless steel	Heat treatment
5	Lead screw	Stainless steel	Heat treatment + Specially treated
6	End plate	Aluminium alloy	Anodised
7	Motor flange	Aluminium alloy	Anodised
8	Stopper	Structural steel	-
9	Motor cover	Aluminium alloy	Anodised
10	End cover	Aluminium alloy	Anodised
11	Motor end cover	Aluminium alloy	Anodised
12	Rod	Stainless steel	-
13	Bearing stopper	Structural steel	Electroless nickel plated
		Brass	Electroless nickel plated (LES25D \square only)
14	Socket	Structural steel	Electroless nickel plated
15	Hub (Lead screw side)	Aluminium alloy	-
16	Hub (Motor side)	Aluminium alloy	-
17	Spacer	Stainless steel	LES25D \square only
18	Grommet	NBR	-
19	Spider	NBR	-
20	Cover	Synthetic resin	-

No.	Description	Material	Note
$\mathbf{2 1}$	Return guide	Synthetic resin	-
$\mathbf{2 2}$	Cover support	Stainless steel	-
$\mathbf{2 3}$	Steel ball	Special steel	-
$\mathbf{2 4}$	Bearing	-	-
$\mathbf{2 5}$	Sim ring	Structural steel	-
$\mathbf{2 6}$	Masking tape	-	-
$\mathbf{2 7}$	Bushing	-	Dustproof specification only
$\mathbf{2 8}$	Scraper	NBR	Dustproof specification only
$\mathbf{2 9}$	Lock	-	With lock only
$\mathbf{3 0}$	Side holder	Aluminium alloy	Anodised

Optional Parts/Side Holder

Model	Order no.
LES8D	LE-D-3-1
LES16D	LE-D-3-2
LES25D	LE-D-3-3

Series LES

Step Motor (Servo/24 VDC)

Dimensions: Basic Type/R Type

LES8R

With lock

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) The number in brackets indicates when the direction of return to origin has changed.
Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Connector		
	Step motor	Servo motor
Motor cable		
Lock cable		\|ripis

Dimensions

Dimensions							
Model	L	D	E	F	G	H	J
LES8R $\square \square-30 \square \square-\square \square \square \square \square$	94.5	26	88.7	62.5	2	27	27
LES8R $\square \square-50 \square \square-\square \square \square \square \square$	137.5	46	131.7	105.5	3	29	58
LES8R $\square \square-75 \square \square-\square \square \square \square \square$	162.5	50	156.7	130.5	4	30	60

Dimensions: Basic Type/R Type

LES16R

	Connector	
	Step motor	Servo motor
Motor cable		
Lock cable		(闍)

Note 1) Range within which the table can move when it returns to origin.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) The number in brackets indicates when the direction of return to origin has changed.
Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Dimensions

Dimensions								
Model	L	C	D	E	F	G	H	J
LES16R $\square \square$-30 $\square \square-\square \square \square \square \square$	108.5	4	38	102.3	78	2	40	40
LES16R $\square \square$-50 $\square \square-\square \square \square \square \square$	136.5	6	34	130.3	106	2	78	78
LES16R $\square \square-75 \square \square-\square \square \square \square \square$	180.5	8	36	174.3	150	4	36	72
LES16R $\square \square$-100 $\square \square \square \square \square \square \square$	205.5	10	36	199.3	175	5	36	108

Series LES

Step Motor (Servo/24 VDC)

Dimensions: Basic Type/R Type

LES25R

A-A

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) The number in brackets indicates when the direction of return to origin has changed.
Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

	Connector	
Motor cable	Step motor	Servo motor
	$\underset{\sim}{m}$	
	$\xrightarrow{20}$	$\xrightarrow{24}$
Lock cable	闌	閏
	15	15

Dimensions

Dimensions								
Model	L	C	D	E	F	G	H	J
LES25R $\square \square$-30 $\square \square-\square \square \square \square \square$	144.5	4	48	133.5	105	2	46	46
LES25R $\square \square-50 \square \square \square \square \square \square \square$	170.5	6	42	159.5	131	2	84	84
LES25R $\square \square-75 \square \square-\square \square \square \square \square$	204.5	6	55	193.5	165	2	112	112
LES25R $\square \square-100 \square \square-\square \square \square \square \square$	277.5	8	50	266.5	238	4	56	112
LES25R $\square \square$-125 $\square \square-\square \square \square \square \square$	302.5	8	55	291.5	263	4	59	118
LES25R $\square \square-150 \square \square-\square \square \square \square \square$	327.5	8	62	316.5	288	4	62	124

Dimensions：Symmetrical Type／L Type
LES8L

With lock

Note 1）Range within which the table can move when it returns to origin． Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 2）Position after return to origin．
Note 3）The number in brackets indicates when the direction of return to origin has changed．
Note 4）If workpiece fixing bolts are too long，they can touch the guide block and cause a malfunction，etc． Use bolts that are between the maximum and minimum screw－in depths in length．

Connector		
	Step motor	Servo motor
Motor cable	些	
Lock cable	$\begin{aligned} & \text { 䦨 } \\ & 15 \\ & \hline 15 \end{aligned}$	

Dimensions

Dimensions	L	D	E	F	G	H	J
Model		LES8L $\square \square$－30 $\square \square-\square \square \square \square \square$	94.5	26	88.7	62.5	2
27	27						
LES8L $\square \square-50 \square \square-\square \square \square \square \square$	137.5	46	131.7	105.5	3	29	58
LES8L $\square \square-75 \square \square-\square \square \square \square \square$	162.5	50	156.7	130.5	4	30	60

Series LES

Step Motor (Servo/24 VDC)

Dimensions: Symmetrical Type/L Type

LES16L

A-A

Connector		
	Step motor	Servo motor
Motor cable		
Lock cable		$\begin{aligned} & \text { 轠 } \\ & 15 \\ & \hline 15 \end{aligned}$

Dimensions

Model	L	C	D	E	F	G	H	J
LES16L $\square \square-30 \square \square-\square \square \square \square \square$	108.5	4	38	102.3	78	2	40	40
LES16L $\square \square$-50 $\square \square-\square \square \square \square \square$	136.5	6	34	130.3	106	2	78	78
LES16L $\square \square-75 \square-\square \square \square \square \square$	180.5	8	36	174.3	150	4	36	72
LES16L $\square \square-100 \square \square-\square \square \square \square \square$	205.5	10	36	199.3	175	5	36	108

Dimensions: Symmetrical Type/L Type
LES25L

With lock

Note 1) Range within which the table can move when it returns to origin.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) The number in brackets indicates when the direction of return to origin has changed.
Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Dimensions

Dimensions								
Model	L	C	D	E	F	G	H	J
LES25L $\square \square-30 \square \square-\square \square \square \square \square$	144.5	4	48	133.5	105	2	46	46
LES25L $\square \square-50 \square \square-\square \square \square \square \square$	170.5	6	42	159.5	131	2	84	84
LES25L $\square \square-75 \square \square-\square \square \square \square \square$	204.5	6	55	193.5	165	2	112	112
LES25L $\square \square-100 \square \square-\square \square \square \square \square$	277.5	8	50	266.5	238	4	56	112
LES25L $\square \square-125 \square \square-\square \square \square \square \square$	302.5	8	55	291.5	263	4	59	118
LES25L $\square \square$-150 $\square \square \square \square \square \square \square$	327.5	8	62	316.5	288	4	62	124

Series LES

Step Motor (Servo/24 VDC)

Dimensions: In-line Motor Type/D Type

LES8D

A-A

* 1 section (30 st)
* 2 sections (50, 75 st)

Connector		
	Step motor	Servo motor
Motor cable	$)^{4 i t}$	
	$\xrightarrow{20}$	$\xrightarrow{24}$
Lock	㗀 ©i	
	15	15

Note 1) Range within which the table can move when it returns to origin.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) The number in brackets indicates when the direction of return to origin has changed.
Note 4) The distance between the motor end cover and the manual override screw is up to 16 mm . The motor end cover hole size is $\varnothing 5.5$.
Note 5) The table is lower than the motor cover. Make sure it does not interfere with the workpiece.
Note 6) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc.
Use bolts that are between the maximum and minimum screw-in depths in length.
Dimensions

Model	(L)	B	D	E	F	G	J	K
LES8D $\square \square$-30 $\square \square-\square \square \square \square \square$	171.5	26	6	88.5	44.5	2	-	81
LES8D $\square \square$-30B $\square \square-\square \square \square \square \square$	225							
LES8D $\square \square$-50 $\square \square-\square \square \square \square \square$	214.5	46	6	131.5	64.5	4	23	124
LES8D $\square \square$-50B $\square \square-\square \square \square \square \square \square$	268							
LES8D $\square \square$-75 $\square \square-\square \square \square \square \square$	239.5	50	6	156.5	64.5	4	48	149
LES8D $\square \square$-75B $\square \square-\square \square \square \square \square$	293							

Dimensions: In-line Motor Type/D Type

LES16D

A-A

* 2 sections ($30,50,75 \mathrm{st}$)
$* 3$ sections (100 st)

Note 1) Range within which the table can move when it returns to origin.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) The number in brackets indicates when the direction of return to origin has changed.
Note 4) The distance between the motor end cover and the manual override screw is up to 17 mm . The motor end cover hole size is $\varnothing 5.5$.
Note 5) The table is lower than the motor cover. Make sure it does not interfere with the workpiece.
Note 6) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc.
Use bolts that are between the maximum and minimum screw-in depths in length.
Dimensions

Dimensions							[mm]	
Model	(L)	B	D	E	F	G	J	K
LES16D $\square \square$-30 $\square \square-\square \square \square \square \square$	193	38	4	1025	56.5	4	18.5	
LES16D $\square \square$-30B $\square \square-\square \square \square \square \square$	256.5	38	4	102.5	56.5	4	18.5	95.5
LES16D $\square \square-50 \square \square-\square \square \square \square \square$	221	34	6	130.5	65	4	38	1235
LES16D $\square \square-50 \mathrm{~B} \square \square-\square \square \square \square \square$	284.5	34	6	130.5	65	4	38	123.5
LES16D $\square \square-75 \square \square-\square \square \square \square \square$	265	36	8	174.5	84	4	63	167.5
LES16D $\square \square$-75B $\square \square-\square \square \square \square \square$	328.5	36	8	174.5	84	4	63	167.5
LES16D $\square \square$-100 $\square \square-\square \square \square \square \square$	290	36	10	1995	84	6	44	1925
LES16D $\square \square$-100B $\square \square-\square \square \square \square \square$	353.5	36	10	199.5	84	6	44	152.5

Dimensions: In-line Motor Type/D Type

LES25D

A-A

* 2 sections (30, 50, 75, 100 st)
* 3 sections (125,150 st)

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table. Note 2) Position after return to origin.
Note 3) The number in brackets indicates when the direction of return to origin has changed.
Note 4) The distance between the motor end cover and the manual override screw is up to 4 mm . The motor end cover hole size is $\varnothing 5.5$.
Note 5) The table is lower than the motor cover.
Note 6) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Dimensions

Model	(L)	B	D	E	F	G	J	K
LES25D \square-30 $\square \square-\square \square \square \square \square$	214	48	4	133.5	81	4	19	121.5
LES25D \square-30B $\square \square$ - $\square \square \square \square \square$	254.5							
LES25D \square-50 $\square \square-\square \square \square \square \square$	240	42	6	159.5	87	4	39	147.5
LES25D \square-50B $\square \square-\square \square \square \square \square$	280.5							
LES25D \square-75 $\square \square-\square \square \square \square \square$	274	55	6	193.5	96	4	64	181.5
LES25D \square-75B $\square \square-\square \square \square \square \square$	314.5							
LES25D \square-100 $\square \square-\square \square \square \square \square$	347	50	8	266.5	144	4	89	254.5
LES25D \square-100B $\square \square-\square \square \square \square \square$	387.5							
LES25D \square-125 $\square \square-\square \square \square \square \square$	372	55	8	291.5	144	6	57	279.5
LES25D \square-125B $\square \square-\square \square \square \square \square$	412.5							
LES25D \square-150 $\square \square-\square \square \square \square \square$	397	62	8	316.5	144	6	69.5	304.5
LES25D \square-150B $\square \square-\square \square \square \square \square$	437.5							

Side Holder

Part no. Note)	A	B	D	E	F	G	Applicable model
LE-D-3-1	45	57.6	6.7	4.5	20	33	LES8D
LE-D-3-2	60	74	8.3	5.5	25	40	LES16D
LE-D-3-3	81	99	12	6.6	30	49	LES25D

[^1]
Electric Slide Table/High Rigidity Type

Selection Procedure For the compact type LES series, refer to page 1.

Step 2 Check the cycle time.

Step 3 Check the allowable moment.

Selection Example

Check the work load-speed. <Speed-Work load graph> (Page 26)
Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LESH16 $\square \mathbf{J}-50$ is temporarily selected based on the graph shown on the right side.

Step 2 Check the cycle time.

It is possible to obtain an approximate cycle time by using method 1 , but if a more detailed cycle time is required, use method 2.

* Although it is possible to make a suitable selection by using method 1, this calculation is based on a maximum load condition. Therefore, if a more detailed selection for each load is required, use method 2.

Method 1: Check the cycle time graph. (Page 27)
Method 2: Calculation <Speed-Work load graph> (Page 26)
Calculate the cycle time using the
Calculation example)
following calculation method.
T1 to T4 can be calculated as follows.
Cycle time:
T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=220 / 5000=0.04[\mathrm{~s}]$,
$\mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=220 / 5000=0.04[\mathrm{~s}]$

- T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

- T2: Constant speed time can be found from the following equation.
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{s}]$
- T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.
T4 = 0.15 [s]
Step 3 Check the allowable moment. <Static allowable moment> (Page 27) <Dynamic allowable moment> (Page 28) Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Operating conditions
-Workpiece mass: 1 [kg] •Workpiece mounting - Speed: 220 [mm/s]

- Mounting orientation: Vertical
- Stroke: 50 [mm]
- Acceleration/Deceleration: 5,000 [mm/s²]
- Cycle time: 0.5 seconds

LESH16 $\square /$ Step Motor Vertical

<Speed-Work load graph>

LESH16 $\square /$ Step Motor

<Cycle time>
LESH16/Pitching

Step Motor (Servo/24 VDC)

* The following graph shows the values when moving force is 100%.

LESH8 \square

Vertical

LESH16 \square

LESH25 \square

Vertical

Servo Motor (24 VDC)

* The following graph shows the values when moving force is 250%.

LESH8 \square A
Horizontal

Vertical

LESH16 \square A

Vertical

LESH $25{ }^{\text {R }}$ A

Vertical

Series LESH

Step Motor (Servo/24 VDC)

Cycle Time (Guide)

Operating Conditions

Acceleration/Deceleration: $5,000 \mathrm{~mm} / \mathrm{s}^{2}$
In position: 0.5

Static Allowable Moment

Model		LESH8		LESH16			LESH25		
Stroke	$[\mathrm{mm}]$	50	$\mathbf{7 5}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{5 0}$	100	150	
Pitching	$[\mathrm{N} \cdot \mathrm{m}]$	11							
Yawing	$[\mathrm{N} \cdot \mathrm{m}]$	11			43	77	112	155	
Rolling	$[\mathrm{N} \cdot \mathrm{m}]$	12		48		146	177	152	

* This graph shows the amount of allowable overhang (guide unit) when the centre of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to "Calculation of Guide Load Factor" or the Electric Actuator Selection Software for confirmation, http://www.smc.eu

Acceleration/Deceleration

Selection Procedure For the compact type LES series, refer to page 5.

Operating conditions

-Pushing force: 90 [N]
-Workpiece mass: 1 [kg]
- Mounting orientation: Vertical upward
-Pushing time + Operation (A): 1.5 seconds
- Speed: 100 [mm/s]
- All cycle time (B): 6 seconds
-Stroke: 100 [mm]

Selection Example

St

Based on the above calculation result, the LESH25 $\square \mathrm{K}-100$ is selected.
For allowable moment, the selection procedure is the same as the positioning control.

Table Weight
Table Weight

Model	Stroke [mm]			
	50	75	100	150
LESH8	0.2	0.3	-	-
LESH16	0.4	-	0.7	-
LESH25	0.9	-	1.3	1.7

* If the mounting position is vertical upward, add the table weight.

<Set value of pushing force-Force graph>

Allowable Duty Ratio
Step Motor (Servo/24 VDC)

Set value of pushing force $(\%)$	Duty ratio $(\%)$	Continuous pushing time (minute)
30	-	-
50 or less	30 or less	5 or less
70 or less	20 or less	3 or less

Servo Motor (24 VDC)

Set value of pushing force $(\%)$	Duty ratio $(\%)$	Continuous pushing time (minute)
50	-	-
75 or less	30 or less	5 or less
100 or less	20 or less	3 or less

* The pushing force of the LESH8 \square A is up to 75%.

Check the duty ratio.

Confirm the allowable duty ratio based on the set value of pushing force with reference to the <Allowable duty ratio>. Selection example) Based on the <Allowable duty ratio>,
$\begin{aligned} \text { Selection example) } & \text { Based on the <Allowable duty ratio> } \\ & \bullet \text { Set value of pushing force: } 40 \text { [\%] }\end{aligned}$
Therefore, the allowable duty ratio can be obtained as 30 [\%].
Calculate the duty ratio for operating conditions, and confirm it does not exceed the allowable duty ratio.
Selection example) •Pushing time + Operation (A): 1.5 seconds \bullet All cycle time (B): 6 seconds

Therefore, the duty ratio can be obtained as $1.5 / 6 \times 100=25$ [\%], and this is the allowable range. <Set value of pushing force-Force graph> (Page 30) Select the target model based on the required force with reference to the <Set value of pushing force-Force graph>, and confirm the set value of pushing force.
Selection example) Based on the graph shown on the right side,

- Required force: 113 [N]

Therefore, the LESH25 $\square \mathrm{K}$ is temporarily selected.
selected.
This set value of pushing force is 40 [\%].

Step 3

Set Value of Pushing Force-Force Graph

Step Motor (Servo/24 VDC)

LESH8 \square

LESH16 \square

LESH25 \square

Servo Motor (24 VDC)
LESH8 \square A

LESH16 \square A

LESH $25{ }^{\text {R }} \mathrm{A}$

Series LESH

Step Motor (Servo/24 VDC)

Table Accuracy

Model	LESH8	LESH16	LESH25
B side parallelism to A side $[\mathrm{mm}]$	Refer to Table 1.		
B side traveling parallelism to A side [mm]	Refer to Graph 1.		
C side perpendicularity to A side $[\mathrm{mm}]$	0.05	0.05	0.05
M dimension tolerance $[\mathrm{mm}]$	± 0.3		
W dimension tolerance $[\mathrm{mm}]$	± 0.2		
Radial clearance $[\mu \mathrm{m}]$	-4 to 0	-10 to 0	-14 to 0

Table 1 B side parallelism to A side

Model	Stroke [mm]			
	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$
LESH8	0.055	0.065	-	-
LESH16	0.05	-	0.08	-
LESH25	0.06	-	0.08	0.125

Graph 1 B side traveling parallelism to A side

Table Deflection (Reference Value)

Table displacement due to pitch moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESH8

LESH16

LESH25

Table displacement due to yaw moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESH8

LESH16

LESH25

Table displacement due to roll moment load Table displacement of section A when loads are applied to the section F with the slide table retracted.

LESH25
$\mathbf{L r}=200 \mathrm{~mm}$

LESH16
 Lr $=120 \mathrm{~mm}$

Electric Slide Table/High Rigidity Type

Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

Series LESH C 6 s.s. LESH8, 16, 25

Multi-Axis Step Motor Controller Compatible Page 96

How to Order

4 Lead [mm]

Symbol	LESH8	LESH16	LESH25
J	8	10	16
K	4	5	8

* R/L type with lock is not available.

Motor option

-	Without option
\mathbf{B}	With lock

7 Body option	
-	Without option
\mathbf{S}	Dustproof specification*

* For R/L type (IP5X equivalent), a scraper is mounted on the rod cover, and gaskets are mounted on both the end covers. For D type, a scraper is mounted on the rod cover.
(3) Motor type

Symbol	Type	Compatible controllers/ driver
-	Step motor (Servo/24 VDC)	LECP6 LECP1 LECPA
A	Servo motor* (24 VDC)	LECA6

* LESH25DA is not available.

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LES series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA).
Refer to page 61 for the noise filter set. Refer to the LECA Operation Manual for installation.

[UL-compliant products]

When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.
Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^2]

Basic type (R type)

Symmetrical type (L type)

In-line motor type (D type)

Symbol	Mounting	R type L type	D type
-	Without side holder	\ominus	\bigcirc
\mathbf{H}	With side holder (4 pcs.)	-	\bigcirc

* Refer to page 48 for details.

11 Controller/Driver type*1

-	Without controller/driver	
6N	LECP6/LECA6	NPN
6P	(Step data input type)	PNP
1N	LECP1*2	NPN
LP	(Programless type)	PNP
AN	LECPA*2	NPN
AP	(Pulse input type)	PNP

*1 Refer to page 52 for the detailed specifications of the controller/driver.
*2 Only available for the motor type "Step motor."

(9) Actuator cable type* ${ }^{* 1}$

-	Without cable
\mathbf{S}	Standard cable*2
\mathbf{R}	Robotic cable (Flexible cable)

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2 Only available for the motor type "Step motor."

12 I/O cable length [m]*1

-	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 2}$
5	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 61 (For LECP6/ LECA6), page 74 (For LECP1) or page 81 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

10 Actuator cable length [m]

-	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
\mathbf{A}	10^{*}
\mathbf{B}	15^{*}
\mathbf{C}	20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 35.

13 Controller/Driver mounting

-	Screw mounting
\mathbf{D}	DIN rail mounting*

* DIN rail is not included. Order it separately. Refer to page 54 for details.

Compatible Controllers/Driver

Type	Step data input type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECA6	LECP1	LECPA
Features	Value (Step data) input Standard controller		Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points		14 points	-
Power supply voltage	24 VDC			
Reference page	Page 53		Page 68	Page 75

Series LESH

Step Motor（Servo／24 VDC）

Specifications

Step Motor（Servo／24 VDC）

Model			LESH8 \square		LESH16 \square		LESH25 \square	
	Stroke［mm］		50， 75		50， 100		50，100， 150	
	Work load［kg］Note 1）3）	Horizontal	2	1	8	5	12	8
		Vertical	0.5	0.25	2	1	4	2
	Pushing force［ N$] 30 \%$ to 70% Note 2）3）		6 to 15	4 to 10	23.5 to 55	15 to 35	77 to 180	43 to 100
	Speed［mm／s］Note 1）3）		10 to 200	20 to 400	10 to 200	20 to 400	10 to 150	20 to 400
	Pushing speed［mm／s］		10 to 20	20	10 to 20	20	10 to 20	20
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］		5，000					
	Positioning repeatability［mm］		± 0.05					
	Lost motion［mm］Note 4）		0.15 or less					
	Screw lead［mm］		4	8	5	10	8	16
	Impact／Vibration resistance［m／s ${ }^{2}$ ］Note 5）		50／20					
	Actuation type		Slide screw＋Belt（R／L type），Slide screw（D type）					
	Guide type		Linear guide（Circulating type）					
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）					
$\stackrel{0}{\circ}$	Motor size		$\square 20$		$\square 28$		$\square 42$	
읓	Motor type		Step motor（Servo／24 VDC）					
：	Encoder		Incremental A／B phase（800 pulse／rotation）					
－	Rated voltage［V］		24 VDC $\pm 10 \%$					
$\begin{aligned} & \text { os } \\ & \text {.0 } \end{aligned}$	Power consumption［W］Note 6）		20		43		67	
\％	Standby power consumption when operating［W］Doie 7］		7		15		13	
Ш	Max．instantaneous power consumption［W］Note 8］		35		60		74	
－	Type		Non－magnetizing lock					
包高	Holding force［N］		24	2.5	300	48	500	77
比: iob			3.5		2.9		5	
			24 VDC ± 10 \％					

Note 1）Speed changes according to the work load．Check＂Speed－Work Load Graph（Guide）＂on page 26.
Note 2）Pushing force accuracy is ± 20 \％（F．S．）．
Note 3）The speed and force may change depending on the cable length，load and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20% ）
Note 4）A reference value for correcting an error in reciprocal operation．
Note 5）Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 6）The power consumption（including the controller）is for when the actuator is operating．
Note 7）The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during the operation．Except during the pushing operation．
Note 8）The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．
Note 9）With lock only
Note 10）For an actuator with lock，add the power consumption for the lock．

Specifications

Servo Motor (24 VDC)

Note 1) LESH25DA is not available.
Note 2) The pushing force values for LESH8 $\square \mathrm{A}$ is 50% to 75%. Pushing force accuracy is ± 20 \% (F.S.).
Note 3) A reference value for correcting an error in reciprocal operation.
Note 4) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 5) The power consumption (including the controller) is for when the actuator is operating.
Note 6) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation.
Note 7) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 8) With lock only
Note 9) For an actuator with lock, add the power consumption for the lock.

Weight

Step Motor (Servo/24 VDC), Servo Motor (24 VDC) Common

Model		Basic type/R type, Symmetrical type/L type							In-line motor type/D type						
		LESH8 ${ }_{\text {L }}(\mathrm{A})$		LESH16 ${ }_{\text {L }}(\mathrm{A})$		LESH25 ${ }_{\text {L }}(\mathrm{A})$			LESH8D(A)		LESH16D(A)		LESH25D		
Stroke [mm]		50	75	50	100	50	100	150	50	75	50	100	50	100	150
Product	Without lock	0.55	0.70	1.15	1.60	2.50	3.30	4.26	0.57	0.70	1.25	1.70	2.52	3.27	3.60
weight [kg]	With lock	-	0.76	-	1.71	2.84	3.64	4.60	0.63	0.76	1.36	1.81	2.86	3.61	3.94

Series LESH

Step Motor (Servo/24 VDC)

Construction: Basic Type/R Type, Symmetrical Type/L Type

Component Parts

No.	Description	Material	Note
1	Motor	-	-
2	Body	Aluminium alloy	Anodised
3	Table	Stainless steel	Heat treament + Electroless nickel plated
4	Guide block	Stainless steel	Heat treatment
5	Lead screw	Stainless steel	Heat treatment + Specially treated
6	End plate	Aluminium alloy	Anodised
7	Pulley cover	Synthetic resin	-
8	End cover	Synthetic resin	-
9	Rod	Stainless steel	-
10	Bearing stopper	Structural steel	Electroless nickel plated
		Brass	Electroless nickel plated (LESH25RLLD only)
11	Motor plate	Structural steel	
12	Lock nut	Structural steel	Chromate treated
13	Socket	Structural steel	Electroless nickel plated
14	Lead screw pulley	Aluminium alloy	-
15	Motor pulley	Aluminium alloy	-
16	Spacer	Stainless steel	LESH25R/L \square only
17	Origin stopper	Structural steel	Electroless nickel plated
18	Bearing	-	-
19	Belt	-	-
20	Grommet	Synthetic resin	-
21	Sim ring	Structural steel	-

No.	Description	Material	Note
$\mathbf{2 2}$	Bushing	-	Dustproof specification only
$\mathbf{2 3}$	Pulley gasket	NBR	Dustproof specification only
$\mathbf{2 4}$	End gasket	NBR	Dustproof specification only
$\mathbf{2 5}$	Scraper	NBR	Dustproof specification only/Rod
$\mathbf{2 6}$	Cover	Synthetic resin	-
$\mathbf{2 7}$	Return guide	Synthetic resin	-
$\mathbf{2 8}$	Scraper	Stainless steel + NBR	Linear guide
$\mathbf{2 9}$	Steel ball	Special steel	-
$\mathbf{3 0}$	Lock	-	With lock only

Replacement Parts/Belt

Model	Order no.
LESH8 \square	LE-D-1-1
LESH16 \square	LE-D-1-2
LESH25 \square	LE-D-1-3
LESH25 \square A	LE-D-1-4

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

Construction: In-line Motor Type/D Type

Shipped together

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	-
$\mathbf{2}$	Body	Aluminium alloy	Anodised
$\mathbf{3}$	Table	Stainless steel	Headtreatment + Electroless nickel paled
$\mathbf{4}$	Guide block	Stainless steel	Heat treatment
5	Lead screw	Stainless steel	Heat treatment + Specially treated
$\mathbf{6}$	End plate	Aluminium alloy	Anodised
$\mathbf{7}$	Motor flange	Aluminium alloy	Anodised
$\mathbf{8}$	Motor cover	Aluminium alloy	Anodised
9	End cover	Aluminium alloy	Anodised
10	Motor end cover	Aluminium alloy	Anodised
11	Rod	Stainless steel	-
		Structural steel	Electroless nickel plated
12	Bearing stopper	Brass	Electroless nickel plated
		Structural steel	Electroless nickel plated
13	Socket	only)	
14	Hub (Lead screw side)	Aluminium alloy	-
15	Hub (Motor side)	Aluminium alloy	-
16	Spacer	Stainless steel	LESH25D \square only
17	Grommet	NBR	-
18	Spider	NBR	-
19	Cover	Synthetic resin	-
20	Return guide	Synthetic resin	-
21	Scraper	Stainless steel + NBR	Linear guide

No.	Description	Material	Note
$\mathbf{2 2}$	Steel ball	Special steel	-
$\mathbf{2 3}$	Bearing	-	-
$\mathbf{2 4}$	Sim ring	Structural steel	-
25	Masking tape	-	-
26	Scraper	NBR	Dustproof specification onlyl Rod
27	Lock	-	With lock only
28	Side holder	Aluminium alloy	Anodised

Optional Parts/Side Holder

Model	Order no.
LESH8D	LE-D-3-1
LESH16D	LE-D-3-2
LESH25D	LE-D-3-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

Series LESH

Step Motor (Servo/24 VDC)

Dimensions: Basic Type (R Type)

LESH8R

Model	C	F	G	J	K	M	N
LESH8R $\square \square-50 \square \square$ - $\square \square \square \square \square$	46	29	3	58	111	125.5	95.5
LESH8R $\square \square-75 \square \square-\square \square \square \square \square$	50	30	4	60	137	151.5	121.5

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the work pieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) The number in brackets indicates when the direction of return to origin has changed.

LESH16R

Model	C	D	F	G	J	K	M	N
LESH16R $\square \square-50 \square \square-\square \square \square \square \square$	40	6	45	2	45	116.5	135.5	106
LESH16R $\square \square$-100 $\square \square-\square \square \square \square \square$	44	8	44	4	88	191.5	210.5	181

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) The number in brackets indicates when the direction of return to origin has changed.
Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Series LESH

Step Motor (Servo/24 VDC)

Dimensions: Basic Type/R Type
LESH25R

[mm]

Model	C	D	F	G	J	K	M	N
LESH25R $\square \square-50 \square \square-\square \square \square \square \square$	75	4	80	2	80	143	168	132
LESH25R $\square \square-100 \square \square-\square \square \square \square \square$	48	8	44	4	88	207	232	196
LESH25R $\square \square-150 \square \square-\square \square \square \square \square$	65	8	66	4	132	285	310	274

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) The number in brackets indicates when the direction of return to origin has changed.
Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Dimensions: Symmetrical Type/L Type
LESH8L

A-A

$\mathbf{G} \times \mathrm{M} 4 \times 0.7$ thread depth 8

$3 \times \mathrm{M} 3 \times 0.5$ thread depth 5.5

[^3]
Series LESH

Step Motor (Servo/24 VDC)

Dimensions: Symmetrical Type/L Type

LESH16L

A-A

	Model	C	D	F	G	J	K	M
N								
LESH16L $\square \square-50 \square \square-\square \square \square \square \square$	40	6	45	2	45	116.5	135.5	106
LESH16L $\square \square-100 \square \square-\square \square \square \square \square$	44	8	44	4	88	191.5	210.5	181

[^4]
Dimensions: Symmetrical Type/L Type

Model	C	D	F	G	J	K	M	N	
LESH25L $\square \square-50 \square \square-\square \square \square \square \square$	75	4	80	2	80	143	168	132	
LESH25L $\square \square-100 \square \square-\square \square \square \square \square$	48	8	44	4	88	207	232	196	
LESH25L $\square \square-150 \square \square-\square \square \square \square \square$	65	8	66	4	132	285	310	274	

[^5]
Series LESH

Step Motor (Servo/24 VDC)

Dimensions: In-line Motor Type/D Type

LESH8D

A-A

Manual override screw Note 4)
Lock cable (0 3.5)

Model	L	B	E	F	J	K
LESH8D $\square \square$-50 $\square \square-\square \square \square \square \square$	201.5	46	111	54.5	19.5	110.5
LESH8D $\square \square$-50B $\square \square-\square \square \square \square \square$	255					
LESH8D $\square \square$-75 $\square \square-\square \square \square \square \square$	227.5	50	137	55.5	44.5	136.5
LESH8D $\square \square$-75B $\square \square-\square \square \square \square \square$	281					

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) The number in brackets indicates when the direction of return to origin has changed.
Note 4) The distance between the motor end cover and the manual override screw is up to 16 mm . The motor end cover hole size is \varnothing 5.5.
Note 5) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Dimensions: In-line Motor Type/D Type
LESH16D

$[\mathrm{mm}]$							
Model	L	B	D	E	F	J	K
LESH16D $\square \square-50 \square \square-\square \square \square \square \square$	219.5	40	6	116.5	65	39.5	122
LESH16D $\square \square-100 \square \square-\square \square \square \square \square \square$	283	$\square \square$	288.5	44	8	191.5	85
LESH16D $\square \square$-100B $\square \square \square \square \square \square \square$	352	88.5	191				

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) The number in brackets indicates when the direction of return to origin has changed.
Note 4) The distance between the motor end cover and the manual override screw is up to 17 mm . The motor end cover hole size is $\varnothing 5.5$.
Note 5) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Series LESH

Step Motor (Servo/24 VDC)

Dimensions: In-line Motor Type/D Type

Model	L	B	D	E	F	G	J	K
LESH25D \square-50 $\square \square-\square \square \square \square \square$	237.5	75	4	143	84	4	40.5	144.5
LESH25D \square-50B $\square \square-\square \square \square \square \square$	278							
LESH25D \square-100 $\square \square-\square \square \square \square \square$	299.5	48	8					
LESH25D \square-100B $\square \square-\square \square \square \square \square$	340			207	98.5		88	206.5
LESH25D \square-150 $\square \square-\square \square \square \square \square$	377.5	65		285	126.5	6	69	284.5
LESH25D \square-150B $\square \square-\square \square \square \square \square$	418							

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) The number in brackets indicates when the direction of return to origin has changed.
Note 4) The distance between the motor end cover and the manual override screw is up to 4 mm .
The motor end cover hole size is $\varnothing 5.5$.
Note 5) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

Side Holder (In-line Motor Type/D Type)

[mm]							
Part no. Note)	A	B	D	E	F	G	Applicable model
LE-D-3-1	45	57.6	6.7	4.5	20	33	LESH8D
LE-D-3-2	60	74	8.3	5.5	25	40	LESH16D
LE-D-3-3	81	99	12	6.6	30	49	LESH25D

Note) Model numbers for 1 side holder.
[mm]

Series LES/LESH
 Electric Slide Tables/ Specific Product Precautions 1

\triangle
Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com

Design

\triangle Caution

1. Do not apply a load in excess of the operating limit.

A product should be selected based on the maximum load and allowable moment. If the product is used outside of the operating limit, eccentric load applied to the guide will become excessive and have adverse effects such as creating play at the guide, degraded accuracy and shortened product life.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause failure.

Handling

\triangle Caution

1. INP output signal
1) Positioning operation

When the product comes within the set range by step data [In position], output signal will be turned on. Initial value: Set to [0.50] or higher.
2) Pushing operation

When the effective force exceeds the [Trigger LV] value, the INP output signal will be turned on. Set the [Pushing force] and [Trigger LV] within the limitation range.
To ensure that the actuator pushes the workpiece with the set [Pushing force], it is recommended that the [Pushing force] and [Trigger LV] are set to the same value.
2. When pushing control is used, be sure to set to [Pushing operation]. Never hit at the stroke end other than returning to the original position.
It may damage or malfunction. The internal stopper can be broken by collision with the stroke end.

3. Do not use the following values for the positioning force.

- Step motor (Servo 24 VDC): 100 \%
- Servo motor (24 VDC): 250 \%

If the positioning force is set below the above-mentioned values, the cycle time will vary, which may cause an alarm.
4. Actual speed of the product can be changed by load.
When selecting a product, check the catalog for the instructions regarding selection and specifications.
5. Do not apply a load, impact or resistance in addition to a transferred load during returning to the original position.
Otherwise, the original position can be displaced since it is based on detected motor torque.

Handling

© Caution

6. The table and guide block are made of special stainless steel. There can be rust on the product in an environment exposed to water drops.
7. Do not dent, scratch or cause other damage to the body, table and end plate mounting surfaces.
It may cause a loss of parallelism in the mounting surfaces, looseness in the guide unit, an increase in sliding resistance or other problems.
8. Do not dent, scratch or cause other damage to the surface over which the rail and guide will move.
Increased sliding resistance and play can result.
9. When attaching a workpiece, do not apply strong impact or large moment.
If an external force over the allowable moment is applied, it may cause looseness in the guide unit, an increase in sliding resistance or other problems.
10. Keep the flatness of mounting surface 0.02 mm or less.
Insufficient flatness of a workpiece or base mounted on the body of the product can cause play at the guide and increased sliding resistance.
11. Do not drive the main body with the table fixed.
12. When mounting the product, for R/L type fixed cable, keep more than the bending dimension as shown below. For D type, keep the 40 mm or more for bending the cable.

Series LES/LESH Electric Slide Tables/ Specific Product Precautions 2

\triangle
Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com

Handling

\triangle Caution

13. When mounting the product, use screws with adequate length and tighten them to the maximum torque or less.
Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

Body fixed/ Side mounting (Body tapped)	Model	Bolt		L(Wa. sceewindepthm)
	LES■8R/L	M4 x 0.7	1.5	8
	LES ${ }^{\text {LES16R }}$	M5 x 0.8	3	10
	LES16R/L	M5 $\times 0.8$		
	LES16D	M6 x 1	5.2	12
	LES25R/L			
	LES25D	M8 $\times 1.25$	10	16
	LESH25			
Body fixed/ Side mounting (Through-hole)	Model	Bolt		L [mm]
	LES8R/L	M3 x 0.5	0.63	23.5
	LESH8R/L			25.5
	LES $\square 8 \mathrm{D}$	$\mathrm{M} 4 \times 0.7$	1.5	18.2
	LES16R/L			33.5
	LES16D	M5 x 0.8	3	25.2
	LESH16R/L			35.5
	LESH16D			25.5
	LES25R/L			49
	LES25D	M6 x 1	5.2	39.8
	LESH25R/L			50.5
	LESH25D			39.5

Workpiece fixed/ Front mounting	Model	Bolt	Max. tightering torove [. M m]	L [mm]
	LES8R/L	M3 $\times 0.5$	0.63	6
	LESH8R/L	M3 $\times 0.5$	0.63	5.5
	LES口8D	M4 \times	1	8
	LES16R/L	M4 \times	1.	
	LES16D	M5 x 0.8	3	
	LESH16■	M5 $\times 0.8$	3	
	LES25R/L	M6 x 1	5.2	12
	LESH25R/L			10
	LES \square 25D			14

To prevent the workpiece fixing bolts from penetrating the end plate, use bolts that are 0.5 mm or shorter than the maximum screw-in depth. If long bolts are used, they can touch the end plate and cause a malfunction, etc.

Model
LES8 \square
LESH8 \square
LES16 \square
LESH16 \square
LES25 \square
LESH25 \square

Bolt	Max. tightening torque [$\mathrm{N} \cdot \mathrm{m}$]	L (Min. to Max. screw-in depth mm)
$\mathrm{M} 3 \times 0.5$	0.63	2.1 to 4.1
		5 (Max.)
$\mathrm{M} 4 \times 0.7$	1.5	2.7 to 5.7
$\mathrm{M} 5 \times 0.8$	3	6.5 (Max.)
	3.3 to 7.3	
$\mathrm{M} 6 \times 1$	5.2	8 (Max.)

To prevent the workpiece fixing bolts from touching the guide block, use bolts that are 0.5 mm or shorter than the maximum screw-in depth. If long bolts are used, they can touch the guide block and cause a malfunction, etc.

Body fixed/Side mounting (Side holder)

When using the side holders to install the actuator, be sure to use the positioning pin. It can be displaced when vibration or excessive external force is applied.

14. In pushing operation, set the product to a position of at least 0.5 mm away from a workpiece. (This position is referred to as a pushing start position.)

If the product is set to the same position as a workpiece, the following alarms may be generated and operation may become unstable.
a. "Posn failed" alarm is generated.

The product cannot reach a pushing start position due to variation in the width of workpieces.
b. "Pushing ALM" alarm is generated.

The product is pushed back from a pushing start position after starting to push.
15. When external force is applied to the table, it is necessary to reduce the work load for the sizing.
When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table increases and may lead to operational failure of the product.
16. When using the side holders to install the actuator, use within the dimension range below.
Otherwise, installation balance will deteriorate and cause loosening.

Model	L [mm]
LES $\square 8 \mathrm{D} \square$-30	5 to 10
LES \square 8D \square-50	20 to 30
LES \square 8D \square-75	50 to 60
LES $116 \mathrm{D}-30$	5 to 10
LES $\square 16 \mathrm{D} \square-50$	20 to 30
LES $\square 16 \mathrm{D}-75$	60 to 75
LES $\square 16 \mathrm{D} \square$-100	85 to 100
LES $\square 25 \mathrm{D} \square$-30	5 to 15
LES $\square 25 \mathrm{D}-50$	25 to 35
LES $\square 25 \mathrm{D}-75$	60 to 75
LES $\square 25 \mathrm{D} \square$-100	70 to 100
LES $\square 25 \mathrm{D} \square$-125	155 to 170
LES $\square 25 \mathrm{D} \square$-150	160 to 180

17. For the LES $\square \square \mathrm{D}$, do not grasp or peel off a masking tape on the bottom of the body.
The masking tape may peel off and foreign matter may get inside the actuator.
18. For the LES $\square \square \mathrm{D}$, a gap will form between the motor flange and table when the table moves (marked with the arrow below). Be careful not to put hands or fingers in a gap.

Series LES/LESH

 Electric Slide Tables/

 Electric Slide Tables/

 Specific Product Precautions 3

 Specific Product Precautions 3}

Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com

Handling

\triangle Caution

19. When mounting the body with through-holes in the mounting orientations below, make sure to use two side holders as shown in the figures.
Otherwise, installation balance will deteriorate and cause loosening.
Bottom mounting

Wall mounting

Vertical mounting

20. Install the body as shown below with the \bigcirc.

Since the product support becomes unstable, it may cause a malfunction, irregular noise and deflection.

21. Even with the same product number, the table of some products can be moved by hand and the table of some products cannot be moved by hand. However, there is no abnormality with these products. (Without lock)
This difference is caused because there is a little variation with the positive efficiency (when the table is moved by the motor) and there is a large variation with the reverse-efficiency (when the table is moved manually) due to the product characteristics. There is hardly any difference among products when they are operated by the motor.

\triangle Warning

1. Ensure that the power supply is stopped before starting maintenance work or replacement of the product.
2. For lubrication, wear protective glasses.
3. Perform maintenance according to the following requirements.

- Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months*	-	\bigcirc
Inspection every 250 km*	-	\bigcirc
Inspection every 5 million cycles*	-	\bigcirc

* Select whichever comes sooner
- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for belt check (R/L type only)

Stop operation immediately and replace the belt when belt appear to be below.
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt

It is recommended that the belt be replaced after being in service for 2 years, or before reaching the following distance.

Controller/Driver

Step Data Input Type

Page 53

Step Motor (Servo/24 VDC) Series LECP6

Series LECA6

Gateway Unit

it Page 65

Series LEC-G

Programless Type
Page 68

Step Motor (Servo/24 VDC) Series LECP1
Series LEC-G
\square —

Servo Motor (24 VDC)

Series LECA6

\triangle Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LE series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the LECA6 series (servo motor controller), EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 61 for the noise filter set. Refer to the LECA Operation Manual for installation.

[UL-compliant products]

When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

* When controller equipped type is selected when ordering the LE series, you do not need to order this controller.

The controller is sold as single unit after the compatible actuator is set.

Confirm that the combination of the controller and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smc.eu

Specifications

Basic Specifications

Item	LECP6	LECA6
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)
Power supply Note 1)	Power voltage: 24 VDC ± 10 \% Note 2) [Including motor drive power, control power, stop, lock release	Power voltage: 24 VDC ± 10 \% Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	11 inputs (Photo-coupler isolation)	
Parallel output	13 outputs (Photo-coupler isolation)	
Compatible encoder	Incremental A/B phase (800 pulse/rotation)	Incremental A/B (800 pulse/rotation)/Z phase
Serial communication	RS485 (Modbus protocol compliant)	
Memory	EEPROM	
LED indicator	LED (Green/Red) one of each	
Lock control	Forced-lock release terminal Note 3)	
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less	
Cooling system	Natural air cooling	
Operating temperature range $\left[{ }^{\circ} \mathrm{C}\right]$	0 to 40 (No freezing)	
Operating humidity range [\%RH]	90 or less (No condensation)	
Storage temperature range [$\left.{ }^{\circ} \mathrm{C}\right]$	-10 to 60 (No freezing)	
Storage humidity range [\%RH]	90 or less (No condensation)	
Insulation resistance [M 2]	Between the housing and SG terminal: 50 (500 VDC)	
Weight [g]	150 (Screw mounting), 170 (DIN rail mounting)	

Note 1) Do not use the power supply of "inrush current prevention type" for the controller power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Precautions on blank controller (LEC $\square 6 \square-\mathrm{BC}$)

Blank controller is a controller to which the customer can write the data of the actuator to be combined and used. Use the dedicated software (LEC-BCW) for data writing.

- Please download the dedicated software (LEC-BCW) via our website.
- Order the controller setting kit (LEC-W2) separately to use this software.

SMC website
http://www.smc.eu

Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details.
Note 3) Applicable to non-magnetizing lock.

Step Data Input Type/Step Motor (Servo/24 vDC) Series LECP6
 Step Data Input Type/Servo Motor (24 vDC) Series LECA6

How to Mount
a) Screw mounting (LEC $\square 6 \square \square-\square$)
(Installation with two M4 screws)

b) DIN rail mounting (LEC $\square 6 \square \square$ D- \square)
(Installation with the DIN rail)

DIN rail is locked.

Hook the controller on the DIN rail and press the lever of section \mathbf{A} in the arrow direction to lock it.

Note) When size 25 or more of the LE series are used, the space between the controllers should be 10 mm or more.

DIN rail
 AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions on page 55 for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Series LECP6
 Series LECA6

Dimensions

a) Screw mounting (LEC $\square 6 \square \square-\square$)

b) DIN rail mounting (LEC $\square 6 \square \square \mathrm{D}-\square$)

Step Data Input Type/Step Motor (Servo/24 vDC) Series LECP6
 Step Data Input Type/Servo Motor (24 vDC) Series LECA6

Wiring Example 1

Power Supply Connector: CN1 *Power supply plug is an accessory.
CN1 Power Supply Connector Terminal for LECP6 (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M 24V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Control power supply (+)	Control power supply (+) supplied to the controller
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

CN1 Power Supply Connector Terminal for LECA6 (PHOENIX CONTACT FK-MC0.5/7-ST-2.5)

Terminal name	Function	Details
OV	Common supply (-)	M 24V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Control power supply (+)	Control power supply (+) supplied to the controller
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock
RG +	Regenerative output 1	Regenerative output terminals for external connection RG- Regenerative output 2
(Not necessary to connect them in the combination with the LE series standard specifications.)		

Power supply plug for LECP6

Power supply plug for LECA6

Wiring Example 2

Input Signal

Name	Details
COM +	Connects the power supply 24 V for input/output signal
COM -	Connects the power supply 0 V for input/output signal
IN0 to IN5	Step data specified Bit No. (Input is instructed in the combination of IN0 to 5.)
SETUP	Instruction to return to origin
HOLD	Operation is temporarily stopped
DRIVE	Instruction to drive
RESET	Alarm reset and operation interruption
SVON	Servo ON instruction

Wiring diagram

LEC $\square 6$ P $\square \square-\square$ (PNP)

Output Signal

Name	Details
OUT0 to OUT5	Outputs the step data no. during operation
BUSY	Outputs when the actuator is moving
AREA	Outputs within the step data area output setting range
SETON	Outputs when returning to origin
INP	Outputs when target position or target force is reached (Turns on when the positioning or pushing is completed.)
SVRE	Outputs when servo is on
*ESTOP Note)	Not output when EMG stop is instructed
*ALARM Note)	Not output when alarm is generated

Note) Signal of negative-logic circuit (N.C.)

Parallel I/O Connector: CN5

* When you connect a PLC etc., to the CN5 parallel I/O connector, use the I/O cable (LEC-CN5- \square). * The wiring should be changed depending on the type of the parallel I/O (NPN or PNP).

Step Data Setting

1. Step data setting for positioning

In this setting, the actuator moves toward and stops at the target position.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

© : Need to be set.

Step Data (Positioning) -: Setting is not required.		
Necessity	Item	Details
©	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
©	Speed	Transfer speed to the target position
©	Position	Target position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Set 0. (If values 1 to 100 are set, the operation will be changed to the pushing operation.)
-	Trigger LV	Setting is not required.
-	Pushing speed	Setting is not required.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Condition that turns on the INP output signal. When the actuator enters the range of [in position], the INP output signal turns on. (It is unnecessary to change this from the initial value.) When it is necessary to output the arrival signal before the operation is completed, make the value larger.

2. Step data setting for pushing

The actuator moves toward the pushing start position, and when it reaches that position, it starts pushing with the set force or less.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

Step Data (Pushing)		Need to be set. Need to be adjusted as required.
Necessity	Item	Details
©	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
\bigcirc	Speed	Transfer speed to the pushing start position
\bigcirc	Position	Pushing start position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Pushing force ratio is defined. The setting range differs depending on the electric actuator type. Refer to the Operation Manual for the electric actuator.
©	Trigger LV	Condition that turns on the INP output signal. The INP output signal turns on when the generated force exceeds the value. Trigger level should be the pushing force or less.
\bigcirc	Pushing speed	Pushing speed during pushing. When the speed is set fast, the electric actuator and work pieces might be damaged due to the impact when they hit the end, so this set value should be smaller. Refer to the Operation Manual for the electric actuator.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
©	In position	Transfer distance during pushing. If the transferred distance exceeds the setting, it stops even if it is not pushing. If the transfer distance is exceeded, the INP output signal will not turn on.

Step Data Input Type/Step Motor (Servo/24 vDC) Series LECP6
 Step Data Input Type/Servo Motor (24 vDC) Series LECA6

Signal Timing
Return to Origin

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuit.

* "OUT" is output when "DRIVE" is changed from ON to OFF.
(When power supply is applied, "DRIVE" or "RESET" is turned ON or "*ESTOP" is turned OFF, all of the "OUT" outputs are OFF.)

HOLD

[^6] not stop even if HOLD signal is input.

* "*ALARM" is expressed as negative-logic circuit.

Series LECP6
 Series LECA6

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

* Produced upon receipt of order (Robotic cable only)

Cable type ${ }^{\circ}$

-	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE - CP - 1	
Cable length (L) [m]	
1	1.5
3	3
5	5
8	8*
A	10^{*}
B	15^{*}
C	20^{*}

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$ ${ }^{5}$ (Terminal no.)

LE-CP- ${ }_{A}^{8} \mathrm{C} /$ Cable length: $8 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$ (* Produced upon receipt of order)

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]
LE - CP - \mathbf{Y}
Cable length (L) [m]

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

* Produced upon receipt of order (Robotic cable only) With lock and sensor

Cable type

-	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{\mathrm{A}}^{8} \mathrm{~B}$ /Cable length: $\mathbf{8} \mathrm{m}, \mathbf{1 0 ~ m , 1 5 ~ m , ~} \mathbf{2 0} \mathrm{m}$

Step Data Input Type/Step Motor (Servo/24 vDC) Series LECP6
 Step Data Input Type/Servo Motor (24 vDC) Series LECA6

[Robotic cable for servo motor (24 VDC)]

LE-CA-1	
Cable length (L) [m]	
1	1.5
3	3
5	5
8	8*
A	10^{*}
B	15^{*}
C	20*

* Produced upon receipt of order

LE-CA- \square

[Robotic cable with lock and sensor for servo motor (24 VDC)]
LE $\mathcal{L} \mathbf{C A}-\mathbf{1}$
Cable length (L) [m]

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
\mathbf{A}	10^{*}
\mathbf{B}	15^{*}
\mathbf{C}	20^{*}

* Produced upon receipt of order With lock and sensor

LE-CA- \square-B

Signal	Connector A1 terminal no.		Cable colour	Connector C terminal no.
U	1		Red	1
V	2		White	2
W	3		Black	3
Signal	Connector A2 terminal no.	Shield	Cable colour	Connector D terminal no.
Vcc	B-1	\bigcirc	Brown	12
GND	A-1		Black	13
$\overline{\mathrm{A}}$	B-2	- ¢	Red	7
A	A-2	$\bigcirc \times$ -	Black	6
\bar{B}	B-3		Orange	9
B	A-3		Black	8
$\overline{\mathrm{Z}}$	B-4	,	Yellow	11
Z	A-4		Black	10
		Connection of shield material	-	3
Signal	terminal no.	Connection of shield materia		
Lock (+)	B-1		Red	4
Lock (-)	A-1		Black	5
Sensor (+) Note)	B-3	\bigcirc	Brown	1
Sensor (-) Note)	A-3		Black	2

Series LECP6
 Series LECA6

Option: I/O Cable

\section*{LEC-CN5-1
 Cable length (L) [m]
 | $\mathbf{1}$ | 1.5 |
| :---: | :---: |
| $\mathbf{3}$ | 3 |
| $\mathbf{5}$ | 5 |}

Connector pin no.	Insulation colour	Dot mark	Dot colour
A1	Light brown	\square	Black
A2	Light brown	\square	Red
A3	Yellow	\square	Black
A4	Yellow	\square	Red
A5	Light green	\square	Black
A6	Light green	\square	Red
A7	Grey	\square	Black
A8	Grey	\square	Red
A9	White	\square	Black
A10	White	\square	Red
A11	Light brown	$\square \square$	Black
A12	Light brown	■ \square	Red
A13	Yellow	$\square \square$	Black

Connector pin no.	Insulation colour	Dot mark	Dot colour
B1	Yellow	■ ■	Red
B2	Light green	■	Black
B3	Light green	■	Red
B4	Grey	■ ■	Black
B5	Grey	■ ■	Red
B6	White	■ ■	Black
B7	White	$\square \square$	Red
B8	Light brown	■ ■ ■	Black
B9	Light brown	■ ■ ■	Red
B10	Yellow	■ ■ ■	Black
B11	Yellow	■■■	Red
B12	Light green	■ ■ ■	Black
B13	Light green	■ ■ ■	Red
-	Shield		

Option: Noise Filter Set for Servo Motor (24 VDC)

LEC - NFA

Contents of the set: 2 noise filters (Manufactured by WURTH ELEKTRONIK: 74271222)

* Refer to the LECA6 series Operation Manual for installation.

Compatible Controller/Driver

Step data input type	Series LECP6/Series LECA6
Pulse input type	Series LECPA

Hardware Requirements

OS	IBM PC/AT compatible machine running Windows ${ }^{®}$ XP (32-bit), Windows ${ }^{\circledR 7}$ (32-bit and 64-bit), Windows ${ }^{\circledR} 8.1$ (32-bit and 64-bit).
Communication interface	USB 1.1 or USB 2.0 ports
Display	XGA (1024 $\times 768$) or more

* Windows ${ }^{\circledR}$ XP, Windows ${ }^{\circledR 7}$ and Windows ${ }^{\circledR 8} 8.1$ are registered trademarks of Microsoft Corporation in the United States.
* Refer to SMC website for version upgrade information, http://www.smc.eu

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and testing of the drive can be performed on the same page.
- Can be used to jog and move at a constant rate.

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

Teaching Box/LEC-T1

How to Order

Standard functions
 - Chinese character display
 - Stop switch is provided.

Option

- Enable switch is provided.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range [${ }^{\circ}$ C]	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**) - Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor

Menu Operations Flowchart

Menu	Data
Data	Step data no.
Monitor	Setting of two items selected below
Jog	Ver. 1.**:
Test	Position, Speed, Force, Acceleration, Deceleration
ALM	Ver. 2.**:
TB setting	Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD,

Normal Mode

Function	Details
Step data	－Step data setting
Parameter	－Parameters setting
Test	－Jog operation／Constant rate movement －Return to origin －Test drive （Specify a maximum of 5 step data and operate．） －Forced output （Forced signal output，Forced terminal output）
Monitor	－Drive monitor －Output signal monitor －Input signal monitor －Output terminal monitor －Input terminal monitor
ALM	－Active alarm display （Alarm reset） －Alarm log record display
File	－Data saving Save the step data and parameters of the controller which is being used for communication（it is possible to save four files，with one set of step data and parameters defined as one file）． －Load to controller Loads the data which is saved in the teaching box to the controller which is being used for communication． －Delete the saved data． －File protection（Ver．2．＊＊）
TB setting	－Display setting （Easy／Normal mode） －Language setting （Japanese／English） －Backlight setting －LCD contrast setting －Beep sound setting －Max．connection axis －Distance unit（mm／inch）
Reconnect	－Reconnection of axis

Menu Operations Flowchart

Menu
Step data
Parameter
Monitor
Test
ALM
File
TB setting
Reconnect

Dimensions

	$\xrightarrow[\square]{34.5}$			
		No．	Description	Function
		1	LCD	A screen of liquid crystal display（with backlight）
－	4	2	Ring	A ring for hanging the teaching box
(3)		3	Stop switch	When switch is pushed in，the switch locks and stops． The lock is released when it is turned to the right．
（1）（3）（0）$-\infty$		4	Stop switch guard	A guard for the stop switch
 （3）		5	Enable switch （Option）	Prevents unintentional operation（unexpected operation） of the jog test function． Other functions such as data change are not covered．
（0）	事	6	Key switch	Switch for each input
㩊	鄂	7	Cable	Length： 3 meters
$\text { (7) } 8$		8	Connector	A connector connected to CN4 of the controller

Gateway Unit Series LEC-G

How to Order

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LE series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Note) DIN rail is not included. Order it separately.

Specifications

Model			LEC-G	GMJ2 \square	LEC-GDN1 \square	LEC-GPR1 \square	LEC-GEN1 \square
Communication specifications	Applicable system	Fieldbus		-Link	DeviceNet ${ }^{\text {TM }}$	PROFIBUS DP	EtherNet/IP ${ }^{\text {TM }}$
		Version Note 1)		r. 2.0	Release 2.0	V1	Release 1.0
	Communication speed [bps]		$\begin{array}{r} 156 \mathrm{k} / 62 \\ / 5 \mathrm{M} \end{array}$	$\begin{aligned} & 25 \mathrm{k} / 2.5 \mathrm{M} \\ & \mathrm{M} / 10 \mathrm{M} \end{aligned}$	125 k/250 k/500 k	$\begin{gathered} \hline 9.6 \mathrm{k} / 19.2 \mathrm{k} / 45.45 \mathrm{k} / \\ 93.75 \mathrm{k} / 187.5 \mathrm{k} / 500 \mathrm{k} / \\ 1.5 \mathrm{M} / 3 \mathrm{M} / 6 \mathrm{M} / 12 \mathrm{M} \\ \hline \end{gathered}$	$10 \mathrm{M} / 100 \mathrm{M}$
	Configuration file ${ }^{\text {Note 2) }}$			-	EDS file	GSD file	EDS file
	I/O occupation area		4 stations occupied (8 times setting)	Input 896 points 108 words Output 896 points 108 words	Input 200 bytes Output 200 bytes	Input 57 words Output 57 words	Input 256 bytes Output 256 bytes
	Power supply for communication Power supply voltage [V] ${ }^{\text {Note } 6)}$ nternal current consumption [mA] Con			-	11 to 25 VDC	-	-
				-	100	-	-
	Communication connector specifications		Connector	(Accessory)	Connector (Accessory)	D-sub	RJ45
	Terminating resistor		Not in	ncluded	Not included	Not included	Not included
Power supply voltage [V] ${ }^{\text {Note 6) }}$			24 VDC ± 10 \%				
Current consumption [mA]	Not connected to teaching box		200				
	Connected to teaching box		300				
EMG output terminal			30 VDC 1 A				
Controller specifications	Applicable controllers		Series LECP6, Series LECA6				
	Communication speed [bps] ${ }^{\text {Note } 3)}$		$115.2 \mathrm{k} / 230.4 \mathrm{k}$				
	Max. number of connectable controllers Note 4)			12	8 Note 5)	5	12
Accessories			Power supply connector, communication connector			Power supply connector	
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 40 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]			-10 to 60 (No freezing)				
Storage humidity range [\%RH]			90 or less (No condensation)				
Weight [g]			200 (Screw mounting), 220 (DIN rail mounting)				

Note 1) Please note that the version is subject to change.
Note 2) Each file can be downloaded from the SMC website, http://www.smc.eu
Note 3) When using a teaching box (LEC-T1-■), set the communication speed to 115.2 kbps .
Note 4) A communication response time for 1 controller is approximately 30 ms .
Refer to "Communication Response Time Guideline" for response times when several controllers are connected.
Note 5) For step data input, up to 12 controllers connectable.
Note 6) When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Communication Response Time Guideline

Response time between gateway unit and controllers depends on the number of controllers connected to the gateway unit.
For response time, refer to the graph below.

* This graph shows delay times between gateway unit and controllers. Fieldbus network delay time is not included.

Dimensions

Screw mounting (LEC-G $\square \square \square$)

Applicable Fieldbus protocol: CC-Link Ver. 2.0

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol: EtherNet/IP ${ }^{\text {тм }}$

Series LEC-G

Dimensions

DIN rail mounting (LEC-G $\square \square \square$)

Applicable Fieldbus protocol: CC-Link Ver. 2.0

* Mountable on DIN rail (35 mm)

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol: EtherNet/IPTM

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions above for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Programless Controller

How to Order

(Except cable specification and actuator options) Example: Enter "LESH8RJ-50" for the LESH8RJ-50B-R16N1.

* When controller equipped type (- $\square 1 \mathrm{~N} \square /-\square 1 \mathrm{P} \square$) is selected when ordering the LE series, you do not need to order this controller.

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEF series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

The controller is sold as single unit after the compatible actuator is set.
Confirm that the combination of the controller and the actuator is correct.

* Refer to the Operation Manual for using the products. Please download it via our website, http://www.smc.eu

Specifications

Basic Specifications

Item	LECP1
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power supply voltage: 24 VDC ± 10 \%, Max. current consumption: 3 A (Peak 5A) Note 2) [Including the motor drive power, control power supply, stop, lock release]
Parallel input	6 inputs (Photo-coupler isolation)
Parallel output	6 outputs (Photo-coupler isolation)
Stop points	14 points (Position number 1 to 14(E))
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
7-segment LED display Note 3)	1 digit, 7-segment display (Red) Figures are expressed in hexadecimal ("10" to "15" in decimal number are expressed as "A" to "F")
Lock control	Forced-lock release terminal Note 4)
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [$\left.{ }^{\circ} \mathrm{C}\right]$	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M 2]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	130 (Screw mounting), 150 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the controller input power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the each actuator's operation manual etc. for details.
Note 3) " 10 " to " 15 " in decimal number are displayed as follows in the 7 -segment LED.

Note 4) Applicable to non-magnetizing lock.

Controller Details

No.	Display	Description	Details
(1)	PWR	Power supply LED	Power supply ON/Servo ON: Green turns on Power supply ON/Servo OFF: Green flashes
(2)	ALM	Alarm LED	With alarm : Red turns on Parameter setting : Red flashes
(3)	-	Cover	Change and protection of the mode switch (Close the cover after changing switch)
(4)	-	FG	Frame ground (Tighten the bolt with the nut when mounting the controller. Connect the ground wire.)
(5)	-	Mode switch	Switch the mode between manual and auto.
(6)	-	7-segment LED	Stop position, the value set by (8) and alarm information are displayed.
(7)	SET	Set button	Decide the settings or drive operation in Manual mode.
(8)	-	Position selecting switch	Assign the position to drive (1 to 14), and the origin position (15).
(9)		Manual forward button	Perform forward jog and inching.
(10)		Manual reverse button	Perform reverse jog and inching.
(11)		Forward speed switch	16 forward speeds are available.
(12)		Reverse speed switch	16 reverse speeds are available.
(13)	ACCEL	Forward acceleration switch	16 forward acceleration steps are available.
(14)		Reverse acceleration switch	16 reverse acceleration steps are available.
(15)	CN1	Power supply connector	Connect the power supply cable.
(16)	CN2	Motor connector	Connect the motor connector.
(17)	CN3	Encoder connector	Connect the encoder connector.
(18)	CN4	I/O connector	Connect I/O cable.

How to Mount

Controller mounting shown below.

1. Mounting screw (LECP1 $\square \square-\square$)
 (Installation with two M4 screws)

2. Grounding

Tighten the bolt with the nut when mounting the ground wire as shown below.

Note) When size 25 or more of the LE series are used, the space between the controllers should be 10 mm or more.

\triangle Caution

- M4 screws, cable with crimping terminal and tooth lock washer are not included. Be sure to carry out grounding earth in order to ensure the noise tolerance.
- Use a watchmaker's screwdriver of the size shown below when changing position switch (8) and the set value of the speed/acceleration switch (11) to (14).

Size

Size
End width L: 2.0 to $2.4[\mathrm{~mm}]$
End thickness W: 0.5 to $0.6[\mathrm{~mm}]$

Dimensions
DIN rail mounting (LEC $\square 1 \square \square \mathrm{D}-\square$)

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below.
Refer to the dimensions above for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5	273
No.	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40		
L	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5		

DIN rail mounting adapter
LEC-1-D0 (with 2 mounting screws)
This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type controller afterwards.

Screw mounting (LEC $\square 1 \square \square-\square$)

Series LECP1

Wiring Example 1

Power Supply Connector: CN1

* When you connect a CN1 power supply connector, use the power supply cable (LEC-CK1-1).
* Power supply cable (LEC-CK1-1) is an accessory.

CN1 Power Supply Connector Terminal for LECP1

Terminal name Cablecolour	Function	Details	
0V	Blue	Common supply (-)	M 24V terminal/C 24V terminal/BK RLS terminal are common (-).
M 24V	White	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Brown	Control power supply (+)	Control power supply (+) supplied to the controller
BK RLS	Black	Lock release (+)	Input (+) for releasing the lock

Power supply cable for LECP1 (LEC-CK1-1)

Wiring Example 2

Parallel I/O Connector: CN4

* When you connect a PLC etc., to the CN4 parallel I/O connector, use the I/O cable (LEC-CK4- \square).
* The wiring should be changed depending on the type of the parallel I/O (NPN or PNP).
- NPN

		Power supply 24 VDC for I/O signal
CN4		
COM +	1	$1 \square$
COM-	2	
OUTO	3	Load -
OUT1	4	Load
OUT2	5	Load -
OUT3	6	Load -
BUSY	7	Load -
ALARM	8	Load
INO	9	
IN1	10	
IN2	11	
IN3	12	
RESET	13	
STOP	14	

Input Signal

Name	Details			
COM+	Connects the power supply 24 V for input/output signal			
COM-	Connects the power supply 0 V for input/output signal			
IN0 to IN3	- Instruction to drive (input as a combination of IN0 to IN3) - Instruction to return to origin (INO to IN3 all ON simultaneously) Example - (instruction to drive for position no. 5)			
	IN3	IN2	IN1	IN0
	OFF	ON	OFF	ON
RESET	Alarm reset and operation interruption During operation: deceleration stop from position at which signal is input (servo ON maintained) While alarm is active: alarm reset			
STOP	Instruction to stop (after maximum deceleration stop, servo OFF)			

Input Signal [INO - IN3] Position Number Chart O: OFF ©: ON

Position number	IN3	IN2	IN1	IN0
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc		\bigcirc	\bigcirc
6	\bigcirc		\bigcirc	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$10(\mathrm{~A})$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 (B)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$12(C)$	\bigcirc	\bigcirc	\bigcirc	
13 (D)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14 (E)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Return to origin	\bigcirc			\bigcirc

PNP

Output Signa

Name	Details			
OUT0 to OUT3	Turns on when the positioning or pushing is completed. (Output is instructed in the combination of OUT0 to 3.) Example - (operation complete for position no. 3)			
	OUT3 OUT2 OUT1 OFF OFF OUT0 BUSY Outputs when the actuator is moving *ALARM Note) Not output when alarm is active or servo OFF			

Note) Signal of negative-logic circuit (N.C.)

Output Signal [OUTO - OUT3] Position Number Chart O: OFF ©: ON

Position number	OUT3	OUT2	OUT1	OUT0
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	-	\bigcirc	\bigcirc
6	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10 (A)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 (B)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12 (C)	-	\bigcirc	\bigcirc	\bigcirc
13 (D)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14 (E)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Return to origin	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Signal Timing

* "*ALARM" is expressed as negative-logic circuit.

(2) Positioning Operation

(3) Cut-off Stop (Reset Stop)

(4) Stop by the STOP Signal

(5) Alarm Reset

[^7]
Series LECP1

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

-	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

 (* Produced upon receipt of order)
Controller side

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

LE-CP- ${ }_{A}^{8} \mathrm{~B} /$ Cable length: $\mathbf{8 m} \mathbf{m}, 10 \mathrm{~m}, 15 \mathrm{~m}, \mathbf{2 0 m}$
(* Produced upon receipt of order)

-	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

Options

[Power supply cable]

LEC-CK1-1

Terminal name	Covered colour	Function
OV	Blue	Common supply (-)
M 24V	White	Motor power supply $(+)$
C 24V	Brown	Control power supply (+)
BK RLS	Black	Lock release $(+)$

> * Conductor size: AWG20
[I/O cable]

Cable length (L) [m]

1	1.5
3	3
5	5

Terminal no.	Insulation colour	Dot mark	Dot colour	Function
1	Light brown	\square	Black	COM+
2	Light brown	\square	Red	COM-
3	Yellow	\square	Black	OUT0
4	Yellow	\square	Red	OUT1
5	Light green	\square	Black	OUT2
6	Light green	\square	Red	OUT3
7	Grey	\square	Black	BUSY
8	Grey	\square	Red	ALARM
9	White	\square	Black	IN0
10	White	\square	Red	IN1
11	Light brown	$\square ■$	Black	IN2
12	Light brown	$\square ■$	Red	IN3
13	Yellow	$\square ■$	Black	RESET
14	Yellow	$\square ■$	Red	STOP

* Conductor size: AWG26

[^8]
Pulse Input Type Series LECPA

\triangle Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LE series and the LECPA series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the LECPA series (step motor driver), EMC compliance was tested by installing a noise filter set (LEC-NFA).
Refer to page 81 for the noise filter set. Refer to the LECPA Operation Manual for installation.

[UL-compliant products]

When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Part number except cable specifications and actuator options
Example: Enter "LESH8RJ-50"
for the LESH8RJ-50B-R16N1.
BC
Blank controller Note)
Note) The dedicated software (LEC-BCW) is required.

* When controller equipped type is selected when ordering the LE series, you do not need to order this driver. * When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) separately.

The driver is sold as single unit after

 the compatible actuator is set.Confirm that the combination of the driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smc.eu

Precautions on blank controller (LECPA $\square \square$-BC)

Blank controller is a controller to which the customer can write the data of the actuator to be combined and used. Use the dedicated software (LEC-BCW) for data writing.

- Please download the dedicated software (LEC-BCW) via our website.
- Order the controller setting kit (LEC-W2) separately to use this software.

SMC website
http://www.smc.eu

Specifications

Item	LECPA
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power voltage: 24 VDC ± 10 \% Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	5 inputs (Except photo-coupler isolation, pulse input terminal, COM terminal)
Parallel output	9 outputs (Photo-coupler isolation)
Pulse signal input	Maximum frequency: 60 kpps (Open collector), 200 kpps (Differential) Input method: 1 pulse mode (Pulse input in direction), 2 pulse mode (Pulse input in differing directions)
Compatible encoder	Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
Lock control	Forced-lock release terminal Note 3)
Cable length [m]	I/O cable: 1.5 or less (Open collector), 5 or less (Differential), Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range $\left[{ }^{\circ} \mathrm{C}\right]$	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M ${ }^{\text {] }}$]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	120 (Screw mounting), 140 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the driver power supply. When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details.
Note 3) Applicable to non-magnetizing lock.

How to Mount

b) DIN rail mounting (LECPA $\square \square \mathrm{D}-\square$) (Installation with the DIN rail)

DIN rail is locked.

Hook the driver on the DIN rail and press the lever of section \mathbf{A} in the arrow direction to lock it.

Note) The space between the drivers should be 10 mm or more.

DIN rail
AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions on page 77 for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting adapter

LEC-2-D0 (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type driver afterward.

Series LECPA

Dimensions
a) Screw mounting (LECPA $\square \square-\square$)

b) DIN rail mounting (LECPA $\square \square \mathrm{D}-\square$)

Wiring Example 1

Power Supply Connector: CN1 * Power supply plug is an accessory.
CN1 Power Supply Connector Terminal for LECPA (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M 24V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the driver
C 24V	Control power supply (+)	Control power supply (+) supplied to the driver
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

Power supply plug for LECPA

Wiring Example 2
Parallel I／O Connector：CN5
＊When you connect a PLC etc．，to the CN5 parallel I／O connector，use the I／O cable（LEC－CL5－ロ）． ＊The wiring should be changed depending on the type of the parallel I／O（NPN or PNP）．

LECPAN $\square \square-\square$（NPN）

Note 1）For pulse signal wiring method，refer to＂Pulse Signal Wiring Details＂．
Note 2）Output when the power supply of the driver is ON．（N．C．）
Input Signal

Name	Details
COM +	Connects the power supply 24 V for input／output signal
COM－	Connects the power supply 0 V for input／output signal
SETUP	Instruction to return to origin
RESET	Alarm reset
SVON	Servo ON instruction
CLR	Deviation reset
TL	Instruction to pushing operation

LECPAP $\square \square-\square$（PNP）

Output Signal

Name	Details
BUSY	Outputs when the actuator is operating
SETON	Outputs when returning to origin
INP	Outputs when target position is reached
SVRE	Outputs when servo is on
＊ESTOP Note 3）	Not output when EMG stop is instructed
＊ALARM Note 3）	Not output when alarm is generated
AREA	Outputs within the area output setting range
WAREA	Outputs within W－AREA output setting range
TLOUT	Outputs during pushing operation

Note 3）Signal of negative－logic circuit ON（N．C．）

Pulse Signal Wiring Details

－Pulse signal output of positioning unit is differential output

－Pulse signal output of positioning unit is open collector output
Pulse signal power supply

Note）Connect the current limit resistor R in series to correspond to the pulse signal voltage．

Pulse signal power supply voltage	Current limit resistor R specifications	Current limit resistor part no．
$24 \mathrm{VDC} \pm 10 \%$	$3.3 \mathrm{k} \Omega \pm 5 \%$ $(0.5 \mathrm{~W}$ or more）	LEC－PA－R－332
$5 \mathrm{VDC} \pm 5 \%$	$390 \Omega \pm 5 \%$ $(0.1 \mathrm{~W}$ or more $)$	LEC－PA－R－391

Series LECPA

Signal Timing

Return to Origin

If the actuator is within the "in position" range of the basic | parameter, INP will turn ON, but if not, it will remain OFF.

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuit.

Positioning Operation

Alarm Reset

[^9]
Pushing Operation

Note) If pushing operation is stopped when there is no pulse deviation, the moving part of the actuator may pulsate.

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]
LE C CP -
Cable length (L) [m]

$\mathbf{1}$	1.5
3	3
5	5
8	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}
* Produced upon receipt of	
order (Robotic cable only)	
Cable type	

[

-	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{5}^{3} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

LE-CP- ${ }_{A C}^{8}$ /Cable length: $8 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$ (* Produced upon receipt of order)

Driver side

(Terminal no.)

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

LE-CP- ${ }_{A C}^{8 B}$ /Cable length: $8 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$ (* Produced upon receipt of order)

Series LECPA

Options

[I/O cable]

* Pulse input usable only with differential. Only 1.5 m cables usable with open collector.

[Noise filter set]

Step motor driver (Pulse input type)

LEC-NFA

Contents of the set: 2 noise filters
(Manufactured by WURTH ELEKTRONIK: 74271222)

* Refer to the LECPA series Operation Manual for installation.

Pin no.	Insulation colour	Dot mark	$\begin{array}{\|c\|} \hline \text { Dot } \\ \text { colour } \end{array}$
1	Light brown	\square	Black
2	Light brown	\square	Red
3	Yellow	\square	Black
4	Yellow	\square	Red
5	Light green	\square	Black
6	Light green	\square	Red
7	Grey	\square	Black
8	Grey	\square	Red
9	White	\square	Black
10	White	\square	Red
11	Light brown	$\square \square$	Black

Pin no.	Insulation colour	$\begin{gathered} \text { Dot } \\ \text { mark } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Dot } \\ \text { colour } \end{array}$
12	Light brown	■■	Red
13	Yellow	■	Black
14	Yellow	■■	Red
15	Light green	■	Black
16	Light green	$\square \square$	Red
17	Grey	■	Black
18	Grey	$\square \square$	Red
19	White	■ ■	Black
20	White	■■	Red
$\begin{array}{\|c\|} \hline \text { Round teminal } \\ 0.5-5 \end{array}$	Green		

[Current limit resistor]

This optional resistor (LEC-PA-R- \square) is used when the pulse signal output of the positioning unit is open collector output.

LEC-PA-R-ㅁ

Current limit resistor

Symbol	Resistance	Pulse signal power supply voltage
332	$3.3 \mathrm{k} \Omega \pm 5 \%$	$24 \mathrm{VDC} \pm 10 \%$
391	$390 \Omega \pm 5 \%$	$5 \mathrm{VDC} \pm 5 \%$

* Select a current limit resistor that corresponds to the pulse signal power supply voltage
* For the LEC-PA-R- \square, two pieces are shipped as a set.

How to Order
\qquad

Description		Model*
(1)	Controller setting software (CD-ROM)	LEC-W2-S
(2)	Communication cable	LEC-W2-C
(3)	USB cable (between the PC and the communication cable)	LEC-W2-U

* Can be ordered separately.

Compatible Controller/Driver

Step data input type
 Pulse input type
 Series LECP6/Series LECA6
 Series LECPA

Hardware Requirements

OS	IBM PC/AT compatible machine running Windows ${ }^{\ominus}$ XP (32-bit), Windows ${ }^{\ominus 7}$ (32-bit and 64-bit), Windows ${ }^{\circledR 8.1}$ (32-bit and 64-bit).
Communication interface	USB 1.1 or USB 2.0 ports
Display	XGA (1024 $\times 768$) or more

* Windows ${ }^{\circledR} \mathrm{XP}$, Windows ${ }^{\circledR 7}$ and Windows ${ }^{\circledR 8} 8.1$ are registered trademarks of Microsoft Corporation in the United States.
* Refer to SMC website for version upgrade information, http://www.smc.eu

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and testing of the drive can be performed on the same page.
- Can be used to jog and move at a constant rate.

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

How to Order

Standard functions
 - Chinese character display - Stop switch is provided.

Option

- Enable switch is provided.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range [${ }^{\circ}$ C]	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	• Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation Note 1) - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**)
- Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor	

Menu Operations Flowchart

Menu	Data
Data	Step data no.
Monitor	Setting of two items selected below
Jog	Ver. 1.**:
Test	Position, Speed, Force, Acceleration, Deceleration
ALM	Ver. 2.**:
TB setting	Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD, Trigger LV, Pushing speed, Moving force, Area 1, Area 2, In position

Normal Mode

Function	Details
Step data	－Step data setting
Parameter	－Parameters setting
－Jog operation／Constant rate movement	
－Return to origin	
－Test drive Note 1）	
（Specify a maximum of 5 step data	
and operate．）	
	－Forced output （Forced signal output，Forced terminal output）Note 2）
Monitor	－Drive monitor －Output signal monitor Note 2） －Input signal monitor Note 2）
－Output terminal monitor	
－Input terminal monitor	

Menu Operations Flowchart

Menu
Step data
Parameter
Monitor
Test
ALM
File
TB setting
Reconnect

Note 2）The following signals are compatible with LECPA with TB Ver． 2.10 or newer．

Input：CLR，TL
Output：TLOUT

Dimensions

No．	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display（with backlight）
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in，the switch locks and stops． The lock is released when it is turned to the right．
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch （Option）	Prevents unintentional operation（unexpected opera－ tion）of the jog test function． Other functions such as data change are not covered．
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length：3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the driver

5 types of communication protocols

${ }^{\text {Nen }}$ (1) IO-Link

EtherCAT. ${ }^{*}$

PR무문禺
DeviceNet

Etherivet/IP

Series JXCE1/91/P1/D1/L1

Series JXCE1/91/P1/D1/L1

Two types of operation command

Step no. defined operation: Operate using the preset step data in the controller.
Numerical data defined operation: The actuator operates using values such as position and speed from the PLC.

Numerical monitoring available

Numerical information, such as the current speed, current position, and alarm codes, can be monitored on the PLC.

Transition wiring of communication cables

Two communication ports are provided.

* For the DeviceNet ${ }^{\text {TM }}$ type, transition wiring is possible using a branch connector.
* 1 to 1 in the case of IO-Link

IO-Link communication can be performed.

The data storage function eliminates the need for troublesome resetting of step data and parameters when changing over the controller.

IO-Link is an open communication interface technology between the sensor/actuator and the I/O terminal that is an international standard, IEC61131-9.

- Step data and parameters can be set from the master side.
Step data and parameters can be set or changed by means of IO-Link communication.
- Data storage function

When the controller is changed, the parameters and step data for the actuator are automatically set.*1

- 4-wire unshielded cables can be used.

[^10]
System Construction

Series LEL Series LEPY/LEPS
Series LEH
Series LEM

(Accessory)

[^11]
Step Motor Controller Series JXCE1/91/P1/D1/L1 (ϵ 。9논

How to Order

Actuator + Controller

Actuator type

Refer to "How to Order" in the actuator catalogue available at www.smc.eu. For compatible actuators, refer to the table below. Example: LES16B-100B-R1C917

Electric Actuator/Rod Series LEY
Electric Actuator/Guide Rod Series LEYG
Electric Actuator/Slider Series LEF
Electric Slide Table Series LES/LESH
Electric Rotary Table Series LER
Electric Actuator/Guide Rod Slider Series LEL
Electric Actuator/Miniature Series LEPY/LEPS
Electric Gripper Series LEH
Electric Actuator/Low-Profile Slider Series LEM

* Only the step motor type is applicable.

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LE series and the JXCE1/91/ P1/D1/L1 series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.

Actuator cable type/length

-	Without cable
S1	Standard cable 1.5 m
S3	Standard cable 3 m
S5	Standard cable 5 m
R1	Robotic cable 1.5 m
R3	Robotic cable 3 m
R5	Robotic cable 5 m
R8	Robotic cable $8 \mathrm{~m}^{* 1}$
RA	Robotic cable $10 \mathrm{~m}^{* 1}$
RB	Robotic cable $15 \mathrm{~m}^{* 1}$
RC	Robotic cable $20 \mathrm{~m}^{* 1}$

*1 Produced upon receipt of order (Robotic cable only)

* The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable.

*1 The DIN rail is not included. It must be ordered separately.
(Refer to page 93.)
Option ${ }^{\circ}$

-	Without option
\mathbf{S}	With straight type DeviceNet ${ }^{\text {TM }}$ communication plug for JXCD1
\mathbf{T}	With T-branch type DeviceNet ${ }^{\text {TM }}$ communication plug for JXCD1

* Select "Nil" for anything other than JXCD1.

Controller

Precautions for blank controllers
(JXC $\square 1 \square \square-B C$)
A blank controller is a controller to which the customer can write the data of the actuator it is to be combined and used with. Use the dedicated software (JXC-BCW) for dedicated so
data writing.

- Please download the dedicated software (JXC-BCW) via our website.
- Order the controller setting kit (LEC-W 2) separately to use this software.

SMC website
http://www.smc.eu

For single axis

Mounting

$\mathbf{7}$	Screw mounting
$\mathbf{8}^{* 1}$	DIN rail

*1 The DIN rail is not included. It must be ordered separately.
(Refer to page 93.)

Refer to the Web

Catalogue.

For single axis

When selecting an electric actuator, refer to the model selection chart of each actuator. Also, for the "Speed-Work Load" graph of the actuator, refer to the LECP6 section on the model selection page of the electric actuators Web Catalogue.

When selecting an electric actuator, refer to the model selection chart of each actuator. Also, for the "Speed-Work Load" graph of the actuator, refer to the LECP6 section on the model selection page of the electric actuators Web Catalogue.

Step Motor Controller Series JXCE1/91/P1/D1/L1

Specifications

Model			JXCE1	JXC91	JXCP1	JXCD1	JXCL1
Network			EtherCAT ${ }^{\text {® }}$	EtherNet/IP ${ }^{\text {TM }}$	PROFINET	DeviceNet ${ }^{\text {TM }}$	IO-Link
Compatible motor			Step motor (Servo/24 VDC)				
Power supply			Power voltage: $24 \mathrm{VDC} \pm 10$ \%				
Current consumption (Controller)			200 mA or less	130 mA or less	200 mA or less	100 mA or less	100 mA or less
Compatible encoder			Incremental A/B phase (800 pulse/rotation)				
		Protocol	EtherCAT ${ }^{\text {® }}{ }^{\text {* }}$	EtherNet/IPTM*2	PROFINET*2	DeviceNet ${ }^{\text {TM }}$	IO-Link
	system	Version*1	Conformance Test Record V.1.2.6	Volume 1 (Edition 3.14) Volume 2 (Edition 1.15)	Specification Version 2.32	Volume 1 (Edition 3.14) Volume 3 (Edition 1.13)	$\begin{aligned} & \hline \text { Version } 1.1 \\ & \text { Port Class A } \\ & \hline \end{aligned}$
	Communication speed		100 Mbps*2	$\begin{gathered} 10 / 100 \text { Mbps*2 } \\ \text { (Automatic negotiation) } \end{gathered}$	$100 \mathrm{Mbps*2}$	125/250/500 kbps	$\begin{gathered} 230.4 \mathrm{kbps} \\ (\mathrm{COM} 3) \end{gathered}$
	Configuration file*3		ESI file	EDS file	GSDML file	EDS file	IODD file
	I/O occupation area		Input 20 bytes Output 36 bytes	Input 36 bytes Output 36 bytes	Input 36 bytes Output 36 bytes	Input 4, 10, 20 bytes Output 4, 12, 20, 36 bytes	Input 14 bytes Output 22 bytes
	Terminating resistor		Not included				
Memory			EEPROM				
LED indicator			PWR, RUN, ALM, ERR	PWR, ALM, MS, NS	PWR, ALM, SF, BF	PWR, ALM, MS, NS	PWR, ALM, COM
Cable length [m]			Actuator cable: 20 or less				
Cooling system			Natural air cooling				
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 40 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Insulation resistance [M Ω]			Between all external terminals and the case 50 (500 VDC)				
Weight [g]			220 (Screw mounting) 240 (DIN rail mounting)	210 (Screw mounting) 230 (DIN rail mounting)	220 (Screw mounting) 240 (DIN rail mounting)	210 (Screw mounting) 230 (DIN rail mounting)	190 (Screw mounting) 210 (DIN rail mounting)

*1 Please note that versions are subject to change.
*2 Use a shielded communication cable with CAT5 or higher for the PROFINET, EtherNet/IP ${ }^{\text {TM }}$, and EtherCAT® .
*3 The files can be downloaded from the SMC website: http://www.smc.eu
-Trademark
EtherNet/IPTM is a trademark of ODVA.
DeviceNet ${ }^{\text {TM }}$ is a trademark of ODVA.
EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Example of Operation Command

In addition to the step data input of 64 points maximum in each communication protocol, the changing of each parameter can be performed in real time via numerical data defined operation.

* Numerical values other than "Moving force," "Area 1," and "Area 2" can be used to perform operation under numerical instructions from JXCL1.

<Application example> Movement between 2 points

No.	Movement mode	Speed	Position	Acceleration	Deceleration	Pushing force	Trigger LV	Pushing speed	Moving force	Area 1	Area 2	In position
0	1: Absolute	100	10	3000	3000	0	0	0	100	0	0	0.50
1	1: Absolute	100	100	3000	3000	0	0	0	100	0	0	0.50

<Step no. defined operation>

Sequence 1: Servo ON instruction
Sequence 2: Instruction to return to origin
Sequence 3: Specify step data No. 0 to input the DRIVE signal.
Sequence 4: Specify step data No. 1 after the DRIVE signal has been temporarily turned OFF to input the DRIVE signal.

<Numerical data defined operation>

Sequence 1: Servo ON instruction
Sequence 2: Instruction to return to origin
Sequence 3: Specify step data No. 0 and turn ON the input instruction flag (position). Input 10 in the target position. Subsequently the start flag turns ON. Sequence 4: Turn ON step data No. 0 and the input instruction flag (position) to change the target position to 100 while the start flag is ON.

The same operation can be performed with any operation command.

Series JXCE1/91/P1/D1/L1

Dimensions

JXCE1/JXC91

JXC91

JXCP1/JXCD1

JXCE1

JXCP1

JXCD1

Step Motor Controller Series JXCE1/91/P1/D1/L1

JXCL1

DIN rail
AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below.

L Dimensions [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Series JXCE1/91/P1/D1/L1

Options

Controller setting kit JXC-W2

[Contents]

(1) Communication cable
(2) USB cable
(3) Controller setting software

* A conversion cable (P5062-5) is not required.

(1) Communication cable JXC-W2-C

* It can be connected to the controller directly.
(2) USB cable JXC-W2-U
(3) Controller setting software JXC-W2-S * CD-ROM

DIN rail mounting adapter LEC-3-D0

* With 2 mounting screws

This should be used when a DIN rail mounting adapter is mounted onto a screw mounting type controller afterwards.

DIN rail AXT100-DR- \square

* For \square, enter a number from the No. line in the table on page 92. Refer to the dimension drawings on page 92 for the mounting dimensions.

Power supply plug JXC-CPW

* The power supply plug is an accessory.

(6) (5) (4)
(1) C24V
(4) OV
(3) (2) (1)
(2) $M 24 \mathrm{~V}$
(5) N.C.
(3) EMG
(6) LK RLS

Power supply plug

Terminal name	Function	Details
0V	Common supply (-)	M24V terminal/C24V terminal/EMG terminal/ LK RLS terminal are common (-).
M24V	Motor power supply (+)	Motor power supply (+) of the controller
C24V	Control power supply (+)	Control power supply (+) of the controller
EMG	Stop (+)	Connection terminal of the external stop circuit
LK RLS	Lock release (+)	Connection terminal of the lock release switch

-Communication plug connector
For DeviceNet ${ }^{\text {TM }}$
Straight type T-branch type
JXC-CD-S JXC-CD-T

Communication plug connector for DeviceNet ${ }^{\text {TM }}$

Terminal name	Details
V+	Power supply (+) for DeviceNetTM
CAN_H	Communication wire (High)
Drain	Grounding wire/Shielded wire
CAN_L	Communication wire (Low)
V-	Power supply (-) for DeviceNet ${ }^{\text {TM }}$

For IO-Link
Straight type
JXC-CL-S

Communication plug connector for IO-Link

Terminal no.	Terminal name	Details
1	L+	+24 V
2	NC	N/A
3	L-	0 V
4	C / Q	IO-Link signal

■Conversion cable P5062-5 (Cable length: $\mathbf{3 0 0}$ mm)

* To connect the teaching box (LEC-T1-3 $\square \mathrm{G} \square$) or controller setting kit (LEC-W2) to the controller, a conversion cable is required.

Series JXCE1/91/P1/D1 Precautions Related to Differences in Controller Versions

As the controller version of the JXC series differs, the internal parameters are not compatible.
■ Do not use a version V2.0 or S2.0 or higher controller with parameters lower than version V2.0 or S2.0.
Do not use a version V2.0 or S2.0 or lower controller with parameters higher than version V2.0 or S2.0.
■ Please use the latest version of the JXC-BCW (parameter writing tool).

* The latest version is Ver. 2.0 (as of December 2017).

Identifying Version Symbols

For versions lower than V2.0 and S2.0:

Do not use with controller parameters higher than V2.0 or S2.0.

$$
\text { vz } 51.31 .0
$$

Applicable models
Series JXCD1 \square
Series JXCP1 \square
Series JXCE1 \square

For versions higher than V2.0 and S2.0:
Do not use with controller parameters lower than V2.0 or S2.0.

Multi-Axis Step Motor Controller

- Speed tuning control ${ }^{* 1}$
(3 Axes: JXC92 4 Axes: JXC73/83/93)
- Linear/circular interpolation

Linear interpolation
Circular interpolation

Positioning/pushing operation - Step data input (Max. 2048 points)
-Space saving, reduced wiring - Absolute/relative position coordinate instructions
*1 This controls the speed of the slave axis when the speed of the main axis drops due to the effects of an external force and when a speed difference with the slave axis occurs. This control is not for synchronising the position of the main axis and slave axis.

For 3 Axes Series JXC92

- Etherilet/IP Type
- Width: Approx. 38 \% reduction

For 4 Axes Series JXC73/83/93

- Parallel I/O/

Etheri et/IP Type "1

- Width: Approx. 18 \% reduction

Series JXC73/83/92/93

Step Data Input: Max. 2048 points

For 3 Axes

3-axis operation can be set collectively in one step.

Step	Axis	Movement mode	Speed	Position	Acceleration	Deceleration	Pushing force	Trigger LV	Pushing speed	Moving force	Area 1	Area 2	In position	Comments
			mm/s	mm	$\mathrm{mm} / \mathrm{s}^{2}$	$\mathrm{mm} / \mathrm{s}^{2}$					mm	mm	mm	
0	Axis 1	ABS	500	100.00	3000	3000	0	85.0	50	100.0	10.0	30.0	0.5	
	Axis 2	ABS	500	100.00	3000	3000	0	85.0	50	100.0	10.0	30.0	0.5	
	Axis 3	ABS	500	100.00	3000	3000	0	85.0	50	100.0	10.0	30.0	0.5	
1	Axis 1	INC	500	200.00	3000	3000	0	85.0	50	100.0	0	0	0.5	
	Axis 2	INC	500	200.00	3000	3000	0	85.0	50	100.0	0	0	0.5	
	Axis 3	INC	500	200.00	3000	3000	0	85.0	50	100.0	0	0	0.5	
!	+		+	!	!	!	!	+	+	+	+	+	+	
2046	Axis 1	SYN-I	500	100.00	3000	3000	0	0	0	100.0	0	0	0.5	
	Axis 2	SYN-I	0	0.00	0	0	0	0	0	100.0	0	0	0.5	
	Axis 3	SYN-I	0	0.00	0	0	0	0	0	100.0	0	0	0.5	
2047	Axis 1	CIR-R	500	0.00	3000	3000	0	0	0	100.0	0	0	0.5	
	Axis 2	CIR-R	0	50.00	0	0	0	0	0	100.0	0	0	0.5	
	Axis 3*1		0	0.00	0	0	0	0	0	100.0	0	0	0.5	
	Axis $4 * 1$		0	25.00	0	0	0	0	0	100.0	0	0	0.5	

*1 When circular interpolation (CIR-R, CIR-L, CIR-3) is selected in the movement mode, input the X and Y coordinates in the rotation centre position or input the X and Y coordinates in the passing position.

Movement mode	Pushing operation	Details
Blank	\times	Invalid data (Invalid process)
ABS	\bigcirc	Moves to the absolute coordinate position based on the origin of the actuator
INC	\bigcirc	Moves to the relative coordinate position based on the current position
LIN-A	\times	Moves to the absolute coordinate position based on the origin of the actuator by linear interpolation
LIN-I	\times	Moves to the relative coordinate position based on the current position by linear interpolation
CIR-R*2	\times	With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves in the clockwise direction by circular interpolation. The target position and rotation centre position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis $3 * 1$: Rotation centre position X Axis $4 * 1$: Rotation centre position Y
CIR-L*2	\times	With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves in the counter-clockwise direction by circular interpolation. The target position and rotation centre position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis $3 * 1$: Rotation centre position X Axis $4 * 1$: Rotation centre position Y
SYN-I	\times	Moves to the relative coordinate position based on the current position by speed tuning control *3
CIR-3*2	\times	With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves based on the three specified points by circular interpolation. The target position and passing position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis $3 * 1$: Passing position X Axis $4 * 1$: Passing position Y

*2 Performs a circular operation on a plane using Axis 1 and Axis 2
*3 This controls the speed of the slave axis when the speed of the main axis drops due to the effects of an external force and when a speed difference with the slave axis occurs. This control is not for synchronising the position of the main axis and slave axis.

For 4 Axes
 4-axis operation can be set collectively in one step.

Step	Axis	Movement mode	Speed	Position	Acceleration	Deceleration	Positioning/ Pushing	Area 1	Area 2	In position	Comments
			mm/s	mm	$\mathrm{mm} / \mathrm{s}^{2}$	$\mathrm{mm} / \mathrm{s}^{2}$		mm	mm	mm	
0	Axis 1	ABS	100	200.00	1000	1000	0	6.0	12.0	0.5	
	Axis 2	ABS	50	100.00	1000	1000	0	6.0	12.0	0.5	
	Axis 3	ABS	50	100.00	1000	1000	0	6.0	12.0	0.5	
	Axis 4	ABS	50	100.00	1000	1000	0	6.0	12.0	0.5	
1	Axis 1	INC	500	250.00	1000	1000	1	0	0	20.0	
	Axis 2	INC	500	250.00	1000	1000	1	0	0	20.0	
	Axis 3	INC	500	250.00	1000	1000	1	0	0	20.0	
	Axis 4	INC	500	250.00	1000	1000	1	0	0	20.0	
!	!		!	!	!	+	-	,	-	,	
2046	Axis 4	ABS	200	700	500	500	0	0	0	0.5	
2047	Axis 1	ABS	500	0.00	3000	3000	0	0	0	0.5	
	Axis 2	ABS	500	0.00	3000	3000	0	0	0	0.5	
	Axis 3	ABS	500	0.00	3000	3000	0	0	0	0.5	
	Axis 4	ABS	500	0.00	3000	3000	0	0	0	0.5	

Movement mode	Pushing operation	
Blank	\times	Invalid data (Invalid process)
ABS	\bigcirc	Moves to the absolute coordinate position based on the origin of the actuator
INC	O	Moves to the relative coordinate position based on the current position
LIN-A	\times	Moves to the absolute coordinate position based on the origin of the actuator by linear interpolation
LIN-I	\times	Moves to the relative coordinate position based on the current position by linear interpolation
CIR-R*1	\times	With Axis 1 assigned to the X-axis and Axis 2 to the Y-axis, it moves in the clockwise direction by circular interpolation. The target position and rotation centre position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis 3: Rotation centre position X Axis 4: Rotation centre position Y
CIR-L*1	\timesWith Axis 1 assigned to the X-axis and Axis 2 to the Y-axis, it moves in the counter-clockwise direction by circular interpolation. The target position and rotation centre position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target positio X Axis 2: Target position Y Axis 3: Rotation centre position X Axis 4: Rotation centre position Y	
SYN-I	\times	Moves to the relative coordinate position based on the current position by speed tuning control $* 2$

[^12]
Series JXC92

For 3 Axes System Construction/EtherNet//P ${ }^{\text {™ }}$ Type (JXC92)

*1 The connected actuators should be ordered separately. (Refer to the applicable actuators on page 102.)

Multi-Axis Step Motor Controller Series JXC73/83

For 4 Axes System Construction/Parallel I/O (JXC73/83)

Series JXC93

For 4 Axes System Construction/EtherNet//P ${ }^{\text {Tu }}$ Type (JXC93)

3－Axis Step Motor Controller （EtheriNet／IP Type）

 Series JXC92
How to Order

EtherNet／IP ${ }^{\text {TM }}$ Type（JXC92）

Applicable Actuators

Applicable actuators	Refer to the Web Catalogue．
Electric Actuator／Rod Series LEY	
Electric Actuator／Guide Rod Series LEYG	
Electric Actuator／Slider Series LEF	
Electric Slide Table Series LES／LESH	
Electric Rotary Table Series LER	
Electric Actuator／Miniature Series LEPY／LEPS	
Electric Gripper（2－Finger Type，3－Finger Type）Series LEH	
＊Order the actuator separately，including the actuator cable． （Example：LEFS16B－100B－S1）	
＊For the＂Speed－Work Load＂graph of the actuator，refer to th the model selection page of the electric actuators Web Cata	ECPA sect ue．

Specifications

For the setting of functions and operation methods，refer to the operation manual on the SMC website．（Documents／Download－－＞Instruction Manuals）
EtherNet／IP ${ }^{\text {TM }}$ Type（JXC92）

＊1 Do not use a power supply with inrush current protection for the motor drive power supply．
＊2 Power consumption depends on the actuator connected．Refer to the actuator specifications for further details．
＊3 EtherNet／IPTM is a trademark of ODVA．
＊4 Applicable to non－magnetising locks

Series JXC92

Dimensions

EtherNet/IPTM Type JXC92

Screw mounting

DIN rail mounting

Controller Details

EtherNet/IPTM Type JXC92

No.	Name	Description	Details
(1)	P1, P2	EtherNet/IPTM ${ }^{\text {communication connector }}$	Connect Ethernet cable.
(2)	NS, MS	Communication status LED	Displays the status of the EtherNet/IP ${ }^{\text {TM }}$ communication
(3)	$\begin{gathered} \text { X100 } \\ \text { X10 } \\ \text { X1 } \end{gathered}$	IP address setting switches	Switch to set the 4th byte of the IP address by X1, X10 and X100.
(4)	PWR	Power supply LED (Green)	Power supply ON: Green turns on Power supply OFF: Green turns off
(5)	RUN	Operation LED (Green)	Running in EtherNet/IPTM: Green turns on Running via USB communication: Green flashes Stopped: Green turns off
(6)	USB	USB connection LED (Green)	USB connected: Green turns on USB not connected: Green turns off
(7)	ALM	Alarm LED (Red)	With alarm: Red turns on Without alarm: Red turns off
(8)	USB	Serial communication connector	Connect to a PC via the USB cable.
(9)	ENC 1	Encoder connector (16 pins)	Axis 1: Connect the actuator cable.
(10)	MOT 1	Motor power connector (6 pins)	
(11)	ENC 2	Encoder connector (16 pins)	Axis 2: Connect the actuator cable.
(12)	MOT 2	Motor power connector (6 pins)	
(13)	ENC 3	Encoder connector (16 pins)	Axis 3: Connect the actuator cable.
(14)	MOT 3	Motor power connector (6 pins)	
(15)	Cl	Control power supply connector *1	Control power supply (+), All axes stop (+), Axis 1 lock release (+), Axis 2 lock release (+), Axis 3 lock release (+), Common (-)
(16)	M PWR	Motor power supply connector *1	Motor power supply (+), Motor power supply (-)

*1 Connectors are included. (Refer to page 108.)

4-Axis Step Motor Controller (Parallel I/O/Etheri' $e t / I P^{\prime}$ Type) Series JXC73/83/93

How to Order
Parallel I/O (JXC73/83)

EtherNet//P ${ }^{\text {TM }}$ Type (JXC93)

Symbol	Mounting
7	Screw mounting
8	DIN rail

4-axis type ${ }^{\circ}$

Applicable Actuators

Series JXC73/83/93

Specifications

Parallel I/O (JXC73/83)	manual on the SMC website. (Documents/Download --> Instruction Manuals)
Item	Specifications
Number of axes	Max. 4 axes
Compatible motor	Step motor (Servo/24 VDC)
Compatible encoder	Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Power supply *1	Main control power supply Power voltage: 24 VDC ± 10 \% Max. current consumption: 300 mA Motor power supply, Motor control power supply (Common) Power voltage: 24 VDC ± 10 \% Max. current consumption: Based on the connected actuator *2
Parallel input	16 inputs (Photo-coupler isolation)
Parallel output	32 outputs (Photo-coupler isolation)
Serial communication	USB2.0 (Full Speed 12 Mbps)
Memory	Flash-ROM/EEPROM
LED indicator	PWR, RUN, USB, ALM
Lock control	Forced-lock release terminal *3
Cable length	I/O cable: 5 m or less, Actuator cable: 20 m or less
Cooling system	Natural air cooling
Operating temperature range	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (No freezing)
Operating humidity range	90 \% RH or less (No condensation)
Storage temperature range	$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (No freezing)
Storage humidity range	90% RH or less (No condensation)
Insulation resistance	Between all external terminals and the case: $50 \mathrm{M} \Omega$ (500 VDC)
Weight	1050 g (Screw mounting), 1100 g (DIN rail mounting)

*1 Do not use a power supply with inrush current protection for the motor drive power and motor control power supply.
*2 Power consumption depends on the actuator connected. Refer to the actuator specifications for further details.
*3 Applicable to non-magnetising locks

EtherNet/IPTM ${ }^{\text {TM }}$ Type (JXC93)

Item		Specifications
Number of axes		Max. 4 axes
Compatible motor		Step motor (Servo/24 VDC)
Compatible encoder		Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Power supply*1		Main control power supply Power voltage: 24 VDC ± 10 \% Max. current consumption: 350 mA Motor power supply, Motor control power supply (Common) Power voltage: 24 VDC ± 10 \% Max. current consumption: Based on the connected actuator *2
$\begin{aligned} & \text { 읓 } \\ & \text { 읃 } \\ & \text { E } \\ & 0 \\ & 0 \end{aligned}$	Protocol	EtherNet/IPTM *4
	Communication speed	$10 \mathrm{Mbps} / 100 \mathrm{Mbps}$ (automatic negotiation)
	Communication method	Full duplex/Half duplex (automatic negotiation)
	Configuration file	EDS file
	Occupied area	Input 16 bytes/Output 16 bytes
	IP address setting range	Manual setting by switches: From 192.168.1.1 to 254, Via DHCP server: Arbitrary address
	Vendor ID	7 h (SMC Corporation)
	Product type	2 Bh (Generic Device)
	Product code	DCh
Serial communication		USB2.0 (Full Speed 12 Mbps)
Memory		Flash-ROM/EEPROM
LED indicator		PWR, RUN, USB, ALM, NS, MS, L/A, 100
Lock control		Forced-lock release terminal *3
Cable length		Actuator cable: 20 m or less
Cooling system		Natural air cooling
Operating temperature range		$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (No freezing)
Operating humidity range		90% RH or less (No condensation)
Storage temperature range		$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (No freezing)
Storage humidity range		90 \% RH or less (No condensation)
Insulation resistance		Between all external terminals and the case: $50 \mathrm{M} \Omega$ (500 VDC)
Weight		1050 g (Screw mounting), 1100 g (DIN rail mounting)

*1 Do not use a power supply with inrush current protection for the motor drive power and motor control power supply.
*2 Power consumption depends on the actuator connected. Refer to the actuator specifications for further details.
*3 Applicable to non-magnetising locks
*4 EtherNet/IP ${ }^{T M}$ is a trademark of ODVA.

4-Axis Step Motor Controller Series JXC73/83/93

Dimensions

Parallel I/O JXC73/83

EtherNet//PTM Type JXC93

Screw mounting

DIN rail mounting

DIN rail mounting

Series JXC73/83/93

Controller Details

Parallel I/O JXC73/83

EtherNet/IPTM Type JXC93

No.	Name	Description	Details
(1)	PWR	Power supply LED (Green)	Power supply ON: Green turns on Power supply OFF: Green turns off
(2)	RUN	Operation LED (Green)	Running in parallel I/O: Green turns on Running via USB communication: Green flashes Stopped: Green turns off
(3)	USB	USB connection LED (Green)	USB connected: Green turns on USB not connected: Green turns off
(4)	ALM	Alarm LED (Red)	With alarm: Red turns on Without alarm: Red turns off
(5)	USB	Serial communication	Connect to a PC via the USB cable.
(6)	C PWR	Main control power supply connector (2 pins) *1	Main control power supply (+) (-)
(7)	I/O 1	Parallel I/O connector (40 pins)	Connect to a PLC via the I/O cable.
(8)	I/O 2	Parallel I/O connector (40 pins)	Connect to a PLC via the I/O cable.
(9)	ENC 1	Encoder connector (16 pins)	Axis 1: Connect the actuator cable.
(10)	MOT 1	Motor power connector (6 pins)	
(11)	ENC 2	Encoder connector (16 pins)	Axis 2: Connect the actuator cable.
(12)	MOT 2	Motor power connector (6 pins)	
(13)	CI 12	Motor control power supply connector*1	Motor control power supply (+), Axis 1 stop (+), Axis 1 lock release (+), Axis 2 stop (+), Axis 2 lock release (+)
(14)	M PWR 1 2	Motor power supply connector*1	For Axis 1, 2. Motor power supply (+), Common (-)
(15)	ENC 3	Encoder connector (16 pins)	Axis 3: Connect the actuator cable.
(16)	MOT 3	Motor power connector (6 pins)	
(17)	ENC 4	Encoder connector (16 pins)	Axis 4: Connect the actuator cable.
(18)	MOT 4	Motor power connector (6 pins)	
(19)	CI 34	Motor control power supply connector*1	Motor control power supply (+), Axis 3 stop (+), Axis 3 lock release (+), Axis 4 stop (+), Axis 4 lock release (+)
(20)	M PWR 3 4	Motor power supply connector*1	For Axis 3, 4. Motor power supply (+), Common (-)

*1 Connectors are included. (Refer to page 108.)

No.	Name	Description	Details
(1)	PWR	Power supply LED (Green)	Power supply ON: Green turns on Power supply OFF: Green turns off
(2)	RUN	Operation LED (Green)	Running in EtherNet/IPTM: Green turns on Running via USB communication: Green flashes Stopped: Green turns off
(3)	USB	USB connection LED (Green)	USB connected: Green turns on USB not connected: Green turns off
(4)	ALM	Alarm LED (Red)	With alarm: Red turns on Without alarm: Red turns off
(5)	USB	Serial communication	Connect to a PC via the USB cable.
(6)	C PWR	Main control power supply connector (2 pins) *1	Main control power supply (+) (-)
(7)	$\begin{gathered} \text { x100 } \\ \text { x10 } \\ \text { x1 } \end{gathered}$	IP address setting switches	Switch to set the 4th byte of the IP address by X1, X10 and X100.
(8)	MS, NS	Communication status LED	Displays the status of the EtherNet/IP ${ }^{\text {TM }}$ communication
(9)	ENC 1	Encoder connector (16 pins)	Axis 1: Connect the actuator cable.
(10)	MOT 1	Motor power connector (6 pins)	
(11)	ENC 2	Encoder connector (16 pins)	Axis 2: Connect the actuator cable.
(12)	MOT 2	Motor power connector (6 pins)	
(13)	CI 12	Motor control power supply connector *1	Motor control power supply (+), Axis 1 stop (+), Axis 1 lock release (+), Axis 2 stop (+), Axis 2 lock release (+)
(14)	M PWR 1 2	Motor power supply connector *1	For Axis 1, 2. Motor power supply (+), Common (-)
(15)	ENC 3	Encoder connector (16 pins)	Axis 3: Connect the actuator cable.
(16)	MOT 3	Motor power connector (6 pins)	
(17)	ENC 4	Encoder connector (16 pins)	Axis 4: Connect the actuator cable.
(18)	MOT 4	Motor power connector (6 pins)	
(19)	CI 34	Motor control power supply connector *1	Motor control power supply (+), Axis 3 stop (+), Axis 3 lock release (+), Axis 4 stop (+), Axis 4 lock release (+)
(20)	M PWR 3 4	Motor power supply connector *1	For Axis 3, 4. Motor power supply (+), Common (-)
(21)	P1, P2	EtherNet/IPTM communication connector	Connect Ethernet cable.

*1 Connectors are included. (Refer to page 108.)

Cable with Main Control Power Supply Connector (For 4 Axes)**: C PWR 1 pc. $\begin{aligned} & \text { For A Axes } \\ & \text {-xC738393 }\end{aligned}$

Terminal name	Function	Details
+24 V	Main control power supply (+)	Power supply (+) supplied to the main control
$24-0 \mathrm{~V}$	Main control power supply (-)	Power supply (-) supplied to the main control

*1 Part no.: JXC-C1 (Cable length: 1.5 m)

Motor Power Supply Connector (For 3/4 Axes)*2: M PWR			2 pcs.*3 For	$\frac{\text { For } 3 \text { Axes }}{\prime J X C 92}$	$\begin{array}{\|c\|} \hline \text { For } 4 \text { Axes } \\ \hline \text { JXC73/83/93 } \\ \hline \end{array}$
Terminal name	Function	Det			Note
OV	Motor power supply (-)	Power supply (-) supplied to the motor power		For 3 axes JXC92	
		The M 24V terminal, C terminal, and LKRLS te	4V terminal, EMG minal are common (-).		$\begin{aligned} & 4 \text { axes } \\ & 73 / 83 / 93 \end{aligned}$
M 24V	Motor power supply (+)	Power supply (+) suppl	ed to the motor power		

*2 Manufactured by PHOENIX CONTACT (Part no.: MSTB2, 5/2-STF-5, 08)
*3 1 pc. for 3 axes (JXC92)

*4 Manufactured by PHOENIX CONTACT (Part no.: FK-MC0, 5/5-ST-2, 5)

Control Power Supply Connector (For 3 Axes)*5: Cl 1 pc.

Terminal name	Function	Details
0V	Control power supply (-)	The C 24V terminal, LKRLS terminal, and EMG terminal are common (-).
C 24V	Control power supply (+)	Power supply (+) supplied to the control
LKRLS3	Lock release (+)	Axis 3: Input (+) for releasing the lock
LKRLS2	Lock release (+)	Axis 2: Input (+) for releasing the lock
LKRLS1	Lock release (+)	Axis 1: Input (+) for releasing the lock
EMG	Stop (+)	All axes: Input (+) for releasing the stop

*5 Manufactured by PHOENIX CONTACT (Part no.: FK-MC0, 5/6-ST-2, 5)

Cable with main control power supply connector

Motor power supply connector

Motor control power supply connector

Control power supply connector

Series JXC73/83/92/93

Wiring Example 2

I/O 1 Wiring example
NPN JXC73

I/O 1 Input Signal

Name	Details
+COM1	
+COM2	Connects the power supply 24 V for input/output signal
IN0 to IN8	Step data specified Bit No. (Standard: When 512 points are used)
IN9 IN10	Step data specified extension Bit No. (Extension: When 2048 points are used)
SETUP	Instruction to return to origin
HOLD	Operation is temporarily stopped
DRIVE	Instruction to drive
RESET	Alarm reset and operation interruption
SVON	Servo ON instruction

PNP JXC83

+COM1	1
+COM2	21
IN0	2
IN1	22
IN2	3
IN3	23
IN4	4
IN5	24
IN6	5
IN7	25
IN8	6
IN9	26
IN10	7
SETUP	27
HOLD	8
DRIVE	28
RESET	9
SVON	29

OUT0	10	Load
OUT1	30	Load
OUT2	11	Load
OUT3	31	Load
OUT4	12	Load
OUT5	32	Load
OUT6	13	Load
OUT7	33	Load
OUT8	14	Load
BUSY (OUT9)	34	Load
AREA (OUT10)	15	Load
SETON	35	Load
INP	16	Load
SVRE	36	Load
*ESTOP	17	Load
*ALARM	37	Load
-COM1	18	
-COM1	19	
-COM1	38	
-COM2	20	
-COM2	39	
-COM2	40	

I/O 1 Output Signal

Name	Details
OUT0 to OUT8	Outputs the step data no. during operation
BUSY (OUT9)	Outputs when the operation of the actuator is in progress
AREA (OUT10)	Outputs when all actuators are within the area output range
SETON	Outputs when the return to origin of all actuators is completed
INP	Outputs when the positioning or pushing of all actuators is completed
SVRE	

Multi-Axis Step Motor Controller Series JXC73/83/92/93

Wiring Example 2

Parallel I/O Connector * When you connect a PLC to the I/O 1 or I/O 2 parallel I/O connector, use the I/O cable (JXC-C2- \square). * The wiring changes depending on the type of the parallel I/O (NPN or PNP).

I/O 2 Wiring example

NPN JXC73

I/O 2 Input Signal

Name	Details
+COM3 +COM4	Connects the power supply 24 V for input/output signal
N.C.	Cannot be connected

PNP JXC83

*1 Cannot be connected

BUSY1	10	Load
BUSY2	30	Load
BUSY3	11	Load
BUSY4	31	Load
AREA1	12	Load
AREA2	32	Load
AREA3	13	Load
AREA4	33	Load
INP1	14	Load
INP2	34	Load
INP3	15	Load
INP4	35	Load
*ALARM1	16	Load
*ALARM2	36	Load
*ALARM3	17	Load
*ALARM4	37	Load
$-C O M 3 ~$	18	
-COM3	19	
-COM3	38	
-COM4	20	
-COM4	39	
-COM4	40	

I/O 2 Output Signal

Name	Details
BUSY1	Busy signal for axis 1
BUSY2	Busy signal for axis 2
BUSY3	Busy signal for axis 3
BUSY4	Busy signal for axis 4
AREA1	Area signal for axis 1
AREA2	Area signal for axis 2
AREA3	Area signal for axis 3
AREA4	Area signal for axis 4
INP1	Positioning or pushing completion signal for axis 1
INP2	Positioning or pushing completion signal for axis 2
INP3	Positioning or pushing completion signal for axis 3
INP4	Positioning or pushing completion signal for axis 4
*ALARM1 *2	Alarm signal for axis 1
*ALARM2 *2	Alarm signal for axis 2
*ALARM3 *2	Alarm signal for axis 3
*ALARM4 *2	Alarm signal for axis 4
-COM3	Connects the power supply 0 V for input/output signal
-COM4	
*2 Negative-logic circuit signal	

[^13]
Series JXC73/83/92/93

Options

Cable with main control power supply connector
 For 4 Axes
 JXC73/83/93
 JXC - C1

Cable length: 1.5 m (Accessory)

Number of cores	2
AWG size	AWG20

I/O cable (1 pc.)

Cable length (L) $[\mathrm{m}]$

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5

Number of cores	40
AWG size	AWG28

For 4 Axes JXC73/83

Controller side

Pin no.	Wire colour						
1	Orange (Black 1)	6	Orange (Black 2)	11	Orange (Black 3)	16	Orange (Black 4)
21	Orange (Red 1)	26	Orange (Red 2)	31	Orange (Red 3)	36	Orange (Red 4)
2	Grey (Black 1)	7	Grey (Black 2)	12	Grey (Black 3)	17	Grey (Black 4)
22	Grey (Red 1)	27	Grey (Red 2)	32	Grey (Red 3)	37	Grey (Red 4)
3	White (Black 1)	8	White (Black 2)	13	White (Black 3)	18	White (Black 4)
23	White (Red 1)	28	White (Red 2)	33	White (Red 3)	38	White (Red 4)
4	Yellow (Black 1)	9	Yellow (Black 2)	14	Yellow (Black 3)	19	Yellow (Black 4)
24	Yellow (Red 1)	29	Yellow (Red 2)	34	Yellow (Red 3)	39	Yellow (Red 4)
5	Pink (Black 1)	10	Pink (Black 2)	15	Pink (Black 3)	20	Pink (Black 4)
25	Pink (Red 1)	30	Pink (Red 2)	35	Pink (Red 3)	40	Pink (Red 4)

DIN rail
For 3 Axes \quad For 4 Axes JXC92 JXC73/83/93
AXT100 - DR- \square

* For \square, enter a number from the No. line in the table below. Refer to the dimension drawings on pages 103 and 106 for the mounting dimensions.

L Dimension

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting bracket (with 6 mounting screws) For3Axes For 4 Axes
 JXC-Z1

Options

(1) Controller setting software (CD-ROM)
(2)USB cable (Cable length: 3 m)

Description		Model
1	Controller setting software	JXC-W1-1
(2)	USB cable	JXC-W1-2

Contents

(1) Controller setting software (CD-ROM)*1
(2) USB cable (Cable length: 3 m)

Description		Model
(1)	Controller setting software	JXC-MA1-1
(2)	USB cable	JXC-MA1-2

(1) Controller setting software

Hardware Requirements

PC/AT compatible machine with Windows 7 or Windows 8.1 and USB1.1 or USB2.0 port

* Windows ${ }^{\circledR}$ is a registered trademark of Microsoft Corporation in the United States.
(1) Controller setting software*1

Hardware Requirements

PC/AT compatible machine with Windows 7 or Windows 8.1 and USB1.1 or USB2.0 port
*1 The controller setting software also includes software dedicated for 4 axes.

* Windows ${ }^{\circledR}$ is a registered trademark of Microsoft Corporation in the United States.

Series JXC73/83/92/93

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

LE -CP -
Cable length (L) [m]

$\mathbf{1}$	1.5
3	3
$\mathbf{5}$	5
$\mathbf{8}$	$8^{* 1}$
\mathbf{A}	$10^{* 1}$
\mathbf{B}	$15^{* 1}$
\mathbf{C}	$20^{* 1}$

*1 Produced upon receipt of order (Robotic cable only)

With lock and sensor

Cable type

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

LE-CP- ${ }_{A}^{8} \mathrm{~B} /$ Cable length: $8 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$
(*1 Produced upon receipt of order)

| | |
| :--- | :--- | :--- | :--- |
| Signal | Connector A |
| terminal no. | |

These safety instructions are intended to prevent hazardous situations and／or equipment damage．These instructions indicate the level of potential hazard with the labels of＂Caution，＂＂Warning＂or＂Danger．＂They are all important notes for safety and must be followed in addition to International Standards（ISO／IEC）＊1），and other safety regulations．

© Warning

1．The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications．
Since the product specified here is used under various operating conditions，its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results． The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product．This person should also continuously review all specifications of the product referring to its latest catalogue information，with a view to giving due consideration to any possibility of equipment failure when configuring the equipment．
2．Only personnel with appropriate training should operate machinery and equipment．
The product specified here may become unsafe if handled incorrectly．The assembly， operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced．

3．Do not service or attempt to remove product and machinery／equipment until safety is confirmed．
1．The inspection and maintenance of machinery／equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed．
2．When the product is to be removed，confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut，and read and understand the specific product precautions of all relevant products carefully．
3．Before machinery／equipment is restarted，take measures to prevent unexpected operation and malfunction．
4．Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions．
1．Conditions and environments outside of the given specifications，or use outdoors or in a place exposed to direct sunlight．
2．Installation on equipment in conjunction with atomic energy，railways，air navigation， space，shipping，vehicles，military，medical treatment，combustion and recreation，or equipment in contact with food and beverages，emergency stop circuits，clutch and brake circuits in press applications，safety equipment or other applications unsuitable for the standard specifications described in the product catalogue．
3．An application which could have negative effects on people，property，or animals requiring special safety analysis．
4．Use in an interlock circuit，which requires the provision of double interlock for possible failure by using a mechanical protective function，and periodical checks to confirm proper operation．

\triangle Caution

1．The product is provided for use in manufacturing industries．
The product herein described is basically provided for peaceful use in manufacturing industries．
If considering using the product in other industries，consult SMC beforehand and exchange specifications or a contract if necessary．
If anything is unclear，contact your nearest sales branch．
＊1）ISO 4414：Pneumatic fluid power－General rules relating to systems．
ISO 4413：Hydraulic fluid power－General rules relating to systems．
IEC 60204－1：Safety of machinery－Electrical equipment of machines．
（Part 1：General requirements）
ISO 10218－1：Manipulating industrial robots－Safety． etc．

Limited warranty and Disclaimer／ Compliance Requirements

The product used is subject to the following＂Limited warranty and Disclaimer＂and＂Compliance Requirements＂．
Read and accept them before using the product．

Limited warranty and Disclaimer

1．The warranty period of the product is 1 year in service or 1.5 years after the product is delivered，wichever is first．＊2） Also，the product may have specified durability，running distance or replacement parts．Please consult your nearest sales branch．

2．For any failure or damage reported within the warranty period which is clearly our responsibility，a replacement product or necessary parts will be provided． This limited warranty applies only to our product independently，and not to any other damage incurred due to the failure of the product．
3．Prior to using SMC products，please read and understand the warranty terms and disclaimers noted in the specified catalogue for the particular products．
＊2）Vacuum pads are excluded from this 1 year warranty．
A vacuum pad is a consumable part，so it is warranted for a year after it is delivered．
Also，even within the warranty period，the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty．

Compliance Requirements

1．The use of SMC products with production equipment for the manufacture of weapons of mass destruction（WMD）or any other weapon is strictly prohibited．
2．The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction．Prior to the shipment of a SMC product to another country，assure that all local rules governing that export are known and followed．

\triangle Caution

SMC products are not intended for use as instruments for legal metrology．
Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology（measurement）laws of each country． Therefore，SMC products cannot be used for business or certification ordained by the metrology（measurement）laws of each country．

Safety Instructions \quad Be sure to read＂Handling Precautions for SMC Products＂（M－E03－3）before using．

SMC Corporation（Europe）							
Austria	요요＋43（0）2262622800	www．smc．at	office＠smc．at	Lithuania	㿻＋37052308118	www．smclt．lt	info＠smclt．lt
Belgium	요＋ 32 （0）33551464	www．smc．be	info＠smc．be	Netherlands	ㅇm＋31（0）205318888	www．smc．n｜	info＠smc．nl
Bulgaria	\％	www．smc．bg	office＠smc．bg	Norway	莖＋4767129020	www．smc－norge．no	post＠smc－norge．no
Croatia	ㅇm․ +385 （0）13707288	www．smc．hr	office＠smc．hr	Poland	％ㅛ－48222119600	www．smc．pl	office＠smc．pl
Czech Republic	애․＋420 541424611	www．smc．cz	office＠smc．cz	Portugal	요․ +351226166570	www．smc．eu	postpt＠smc．smces．es
Denmark	\％+4570252900	www．smcdk．com	smc＠smcdk．com	Romania	\％ $\mathbf{T}+40213205111$	www．smcromania．ro	smcromania＠smcromania．ro
Estonia	盖＋3726510370	www．smcpneumatics．ee	smc＠smcpneumatics．ee	Russia	\％ ＋78127185445	www．smc－pneumatik．ru	info＠smc－pneumatik．ru
Finland	\％	www．smc．fi	smcti＠smc．fi	Slovakia	曾＋421（0）413213212	www．smc．sk	office＠smc．sk
France	盖＋33（0）164761000	www．smc－france．fr	info＠smc－france．fr	Slovenia	皿＋386（0）73885412	www．smc．si	office＠smc．si
Germany	앵＋49（0）61034020	www．smc．de	info＠smc．de	Spain	애․ +34945184100	www．smc．eu	post＠smc．smces．es
Greece	－	www．smchellas．gr	sales＠smchellas．gr	Sweden	\％	www．smc．nu	post＠smc．nu
Hungary	皿＋3623513000	www．smc．hu	office＠smc．hu	Switzerland	… +41 （0）523963131	www．smc．ch	info＠smc．ch
Ireland		www．smcpneumatics．ie	sales＠smcpneumatics．ie	Turkey	\％	www．smcpnomatik．com．tr	info＠smcpnomatik．com．tr
Italy	용＋390292711	www．smcitalia．it	mailbox＠smcitalia．it	UK	요․ +44 （0）845 1215122	www．smc．uk	sales＠smc．uk
Latvia	요－371 67817700	www．smc．lv	info＠smc．lv				

[^0]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^1]: Note) Model numbers for 1 side holder.

[^2]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^3]: Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
 Note 2) Position after return to origin.
 Note 3) The number in brackets indicates when the direction of return to origin has changed.
 Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

[^4]: Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
 Note 2) Position after return to origin.
 Note 3) The number in brackets indicates when the direction of return to origin has changed.
 Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

[^5]: Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
 Note 2) Position after return to origin.
 Note 3) The number in brackets indicates when the direction of return to origin has changed.
 Note 4) If workpiece fixing bolts are too long, they can touch the guide block and cause a malfunction, etc. Use bolts that are between the maximum and minimum screw-in depths in length.

[^6]: * When the actuator is in the positioning range in the pushing operation, it does

[^7]: * "*ALARM" is expressed as negative-logic circuit.

[^8]: * Parallel I/O signal is valid in auto mode. While the test function operates at manual mode, only the output is valid.

[^9]: * "*ALARM" is expressed as negative-logic circuit.

[^10]: *1 The "basic parameter" and the "return to origin parameter" are automatically set as the actuator parameters, and the 3 items of data consisting of No. 0 to 2 are automatically set as the step data.

[^11]: *1 A conversion cable is also required for connecting the controller to the LEC-W2. (A conversion cable is not required for the JXC-W2.)

[^12]: *1 Performs a circular operation on a plane using Axis 1 and Axis 2
 *2 This controls the speed of the slave axis when the speed of the main axis drops due to the effects of an external force and when a speed difference with the slave axis occurs. This control is not for synchronising the position of the main axis and slave axis.

[^13]: *2 Negative-logic circuit signal

