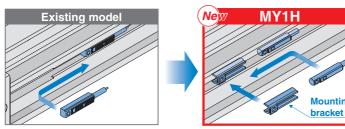

Mechanically Jointed Rodless Cylinder New

Linear Guide Type: Ø25, Ø32, Ø40

Piping can be connected from 4 directions on the head cover.

 Allows on-site piping to suit the installation conditions.

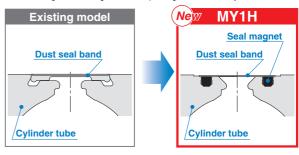
Easy adjustment of cushion needle


(RoHS)

Adjustment is easier by changing the cushion needle adjustment from side to top.

Auto switch can be mounted in any desired position. (D-M9□, D-A9□)

- The auto switch can be fixed in any desired position with a mounting bracket.
- · This reduces man-hours for mounting.

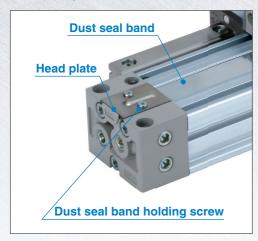


Insert it at the notch and slide it along the mounting groove.

Mounting

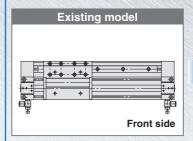
New dust seal band improves life.

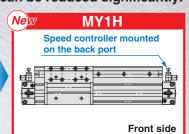
- The conventional groove mounting is changed to a magnetically sealed type.
- This means the dust seal band is always in contact with the cylinder, which reduces ingress of foreign matter, improving the life of the cylinder.


The mounting and performance are the same as before, but the weight is reduced. Bore size [mm] Reduction rate Existing model

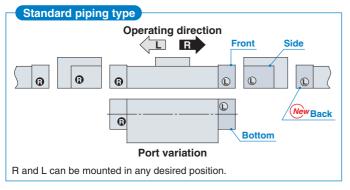
 Weight is reduced by the die cast head cover and removal of guide cover.

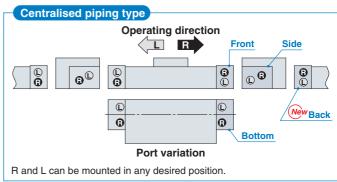
Bore size [mm]	New MY1H	Reduction rate	Existing model
25	2.17 kg	6%	2.31 kg
32	4.37 kg	6%	4.65 kg
40	5.84 kg	8%	6.37 kg


Maintenance of dust seal band improved


- No need to select the dust seal band from two types.
- The dust seal band can be removed by loosening two holding screws (on one side).

Space saving achieved by piping on the back

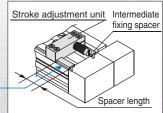

When a speed controller is mounted, the cylinder installation area can be reduced significantly.



With addition of the back port, piping can be connected to suit the installation conditions.

Stroke Adjustment Unit

 With adjustment bolt • With low/high load shock absorber + adjustment bolt (L/H unit)



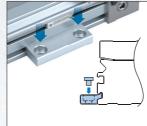
Intermediate fixing spacer as standard

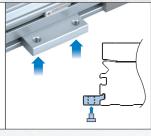
Fixture can be selected to hold the stroke adjustment unit at the intermediate stroke position.

Improved shock-less characteristics when a workpiece is stopped

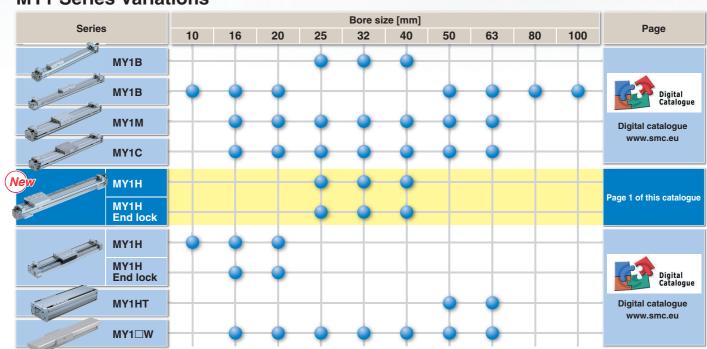
Soft type of shock absorber can be selected for the stroke adjustment unit. (Made to Order: -XB22)

The cross section of the liquid passage is changed in proportion to the stroke by a unique mechanism. This allows a smooth absorption process.




Improvement of positioning accuracy

Uses a linear guide to achieve high repeatability.

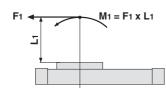

Side Support

Prevents deflection of the cylinder tube at a long stroke.

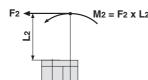
MY1 Series Variations

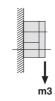
Series MY1H **Prior to Use**

Maximum Allowable Moment/Maximum Load Weight


Model	Bore size	Maximum a	allowable mo	ment [N·m]	Maximum load weight [kg]			
	[mm]	M ₁	M2	Мз	m 1	m ₂	m 3	
	25	23	26	23	27.5	27.5	27.5	
MY1H	32	39	50	39	39.2	39.2	39.2	
	40	50	50	39	50	50	50	

The above values are the maximum allowable values for moment and load weight. Refer to each graph regarding the maximum allowable moment and maximum load weight for a particular piston speed.


Load weight (kg)



Calculation of Guide Load Factor

- 1) Maximum load weight (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
 - * To evaluate, use $\mathfrak V$ a (average speed) for (1) and (2), and $\mathfrak V$ (collision speed $\mathfrak V$ = 1.4 $\mathfrak V$ a) for (3). Calculate m max for (1) from the maximum load weight graph (m1, m2, m3) and M max for (2) and (3) from the maximum allowable moment graph (M1, M2, M3).

- Note 1) Moment caused by the load, etc., with cylinder in resting condition
- Note 2) Moment caused by the load equivalent to impact at the stroke end (at the time of impact with stopper)
- Note 3) Depending on the shape of a workpiece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma \alpha$) is the total of all such moments.
- 2) Reference formula [Dynamic moment at the time of impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

m: Load weight [kg]

F: Load [N]

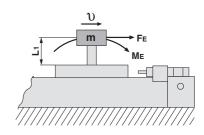
FE: Load equivalent to impact

(at the time of impact with stopper) [N]

M : Static moment [N·m]

$$\upsilon = 1.4\upsilon a \text{ [mm/s]} \quad {}^{\text{Note 4})}_{\text{FE}} = 1.4\upsilon a \cdot \delta \cdot m \cdot g$$

$$\therefore Me = \frac{1}{3} \cdot Fe \cdot L_1 = 4.57 \text{$Va\delta mL}_1 \text{ [N·m]}$$

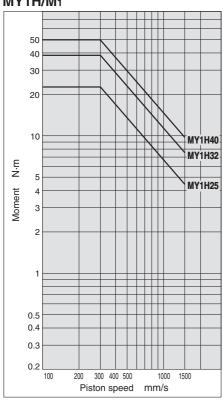

υ : Collision speed [mm/s]

L1: Distance to the load center of gravity [m]

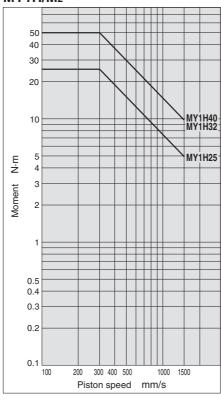
ME: Dynamic moment [N⋅m]

δ : Bumper coefficient With air cushion = 1/100 With shock absorber = 1/100

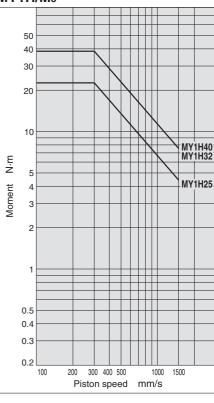
q: Gravitational acceleration (9.8 m/s2)



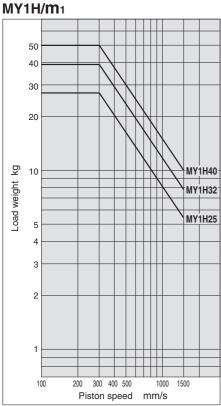
Note 4) $1.4 \Im \delta$ is a dimensionless coefficient for calculating impact force. Note 5) Average load coefficient (= $\frac{1}{3}$): For averaging the maximum load moment at the time of impact with stopper according to service life calculations.


3) For detailed selection procedures, refer to Front matter 3 and 4.

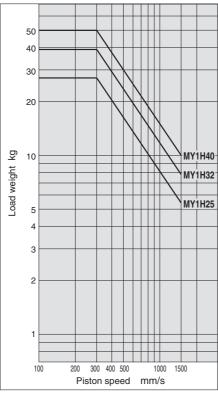
Maximum Allowable Moment Select the moment from within the range of operating limits shown in the graphs. Note that the maximum load weight value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the load weight for the selected conditions.


MY1H/M₁

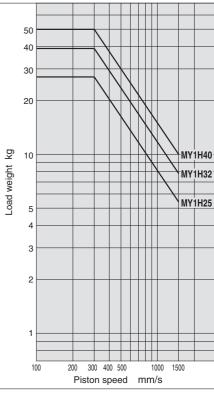
MY1H/M₂



МҮ1Н/Мз



Maximum Load Weight

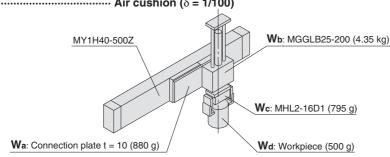

Select the load weight from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.

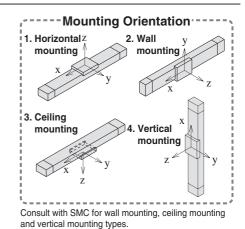
MY1H/m₂

MY1H/m₃

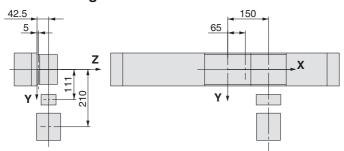
Model Selection

The following is the steps for selecting the most suitable MY1H series to your application.


Calculation of Guide Load Factor


1. Operating Conditions

Cylinder MY1H40-500Z Average operating speed $\Im a \cdots 300$ mm/s


Mounting orientation Wall mounting

Cushion Air cushion (δ = 1/100)

2. Load Blocking

Weight and Centre of Gravity for Each Workpiece

Marknings	Moight	Centre of gravity						
Workpiece Wn	Weight m n	X-axis Xn	Y-axis Yn	Z-axis Zn				
Wa	0.88 kg	65 mm	0 mm	5 mm				
Wb	4.35 kg	4.35 kg 150 mm		42.5 mm				
Wc	Wc 0.795 kg		111 mm	42.5 mm				
Wd	0.5 kg	150 mm	210 mm	42.5 mm				

n = a, b, c, d

3. Calculation of Composite Centre of Gravity -

$$\mathbf{m}_3 = \Sigma \mathbf{m}_n$$

= 0.88 + 4.35 + 0.795 + 0.5 = **6.525 kg**

=
$$0.88 + 4.35 + 0.795 + 0.5 =$$
6.525 kg

$$X = \frac{1}{m_3} \times \Sigma (m_n \times x_n)$$

=
$$\frac{1}{6.525}$$
 (0.88 x 65 + 4.35 x 150 + 0.795 x 150 + 0.5 x 150) = **138.5 mm**

$$\mathbf{Y} = \frac{1}{\mathbf{m}_3} \times \Sigma \left(\mathbf{m}_n \times \mathbf{y}_n \right)$$

$$= \frac{1}{6.525} (0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210) = 29.6 \text{ mm}$$

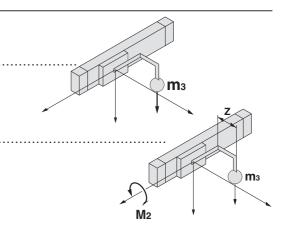
$$\mathbf{Z} = \frac{1}{\mathbf{m}_3} \times \Sigma \left(\mathbf{m}_n \times \mathbf{z}_n \right)$$

$$= \frac{1}{6.525} (0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5) =$$
37.4 mm

4. Calculation of Load Factor for Static Load -

m3: Weight

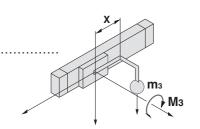
m₃ max (from 1) of graph MY1H/**m**₃) = 50 [kg].....


Load factor $\Omega_1 = m_3/m_3 max = 6.525/50 = 0.13$

M2: Moment

M2 max (from ② of graph MY1H/**M2**) = 50 [N·m].....

 $M_2 = M_3 \times g \times Z = 6.525 \times 9.8 \times 37.4 \times 10^{-3} = 2.39 [N \cdot m]$


Load factor $O(2) = M_2/M_2 \text{ max} = 2.39/50 = 0.05$

M₃: Moment

$$M_3 = M_3 \times q \times X = 6.525 \times 9.8 \times 138.5 \times 10^{-3} = 8.86 \text{ [N·m]}$$

Load factor O.3 = M3/M3 max = 8.86/38.7 = 0.23

5. Calculation of Load Factor for Dynamic Moment

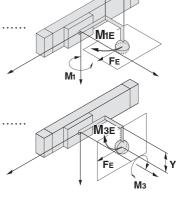
Equivalent load FE at impact

FE = 1.4
$$\mathbf{V}$$
a x $\mathbf{\delta}$ x **m** x **g** = 1.4 x 300 x $\frac{1}{100}$ x 6.525 x 9.8 = 268.6 [N]


M1E: Moment

M1E max (from 4) of graph MY1H/M1 where 1.4Va = 420 mm/s) = 35.9 [N·m].......

M1E =
$$\frac{1}{3}$$
 x **F**E x **Z** = $\frac{1}{3}$ x 268.6 x 37.4 x 10⁻³ = 3.35 [N·m]


Load factor Cl4 = M1E/M1E max = 3.35/35.9 = 0.09

МзE: Moment

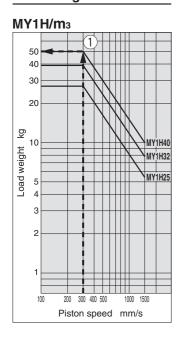
M3E =
$$\frac{1}{3}$$
 x **F**E x **Y** = $\frac{1}{3}$ x 268.6 x 29.6 x 10⁻³ = 2.65 [N·m]

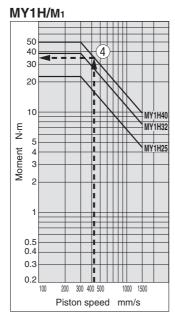
Load factor CL5 = M3E/M3E max = 2.65/27.6 = 0.10

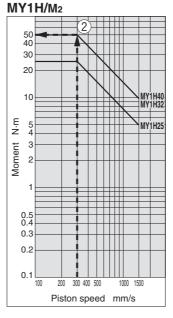
6. Sum and Examination of Guide Load Factors

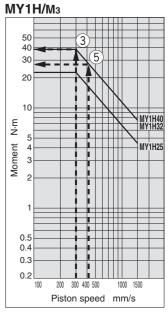
$$\Sigma \alpha = \Omega 1 + \Omega 2 + \Omega 3 + \Omega 4 + \Omega 5 = 0.60 \le 1$$

The above calculation is within the allowable value, and therefore the selected model can be used.

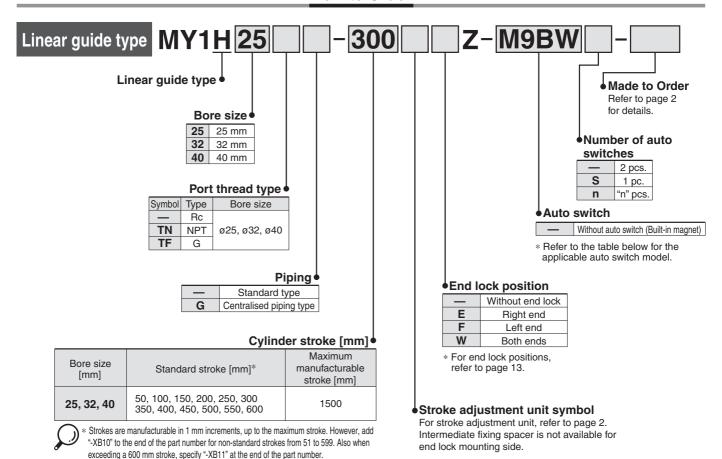

Select a shock absorber separately.


In an actual calculation, when the total sum of guide load factors $\Sigma \alpha$ in the formula above is over 1, consider either decreasing the speed, increasing the bore size, or changing the product series.


This calculation can be easily made using the "Guide Cylinder Selection Software", download it from http://www.smc.eu.


Load Weight

Allowable Moment



Mechanically Jointed Rodless Cylinder Linear Guide Type

Series MY1H Ø25, Ø32, Ø40

How to Order

Applicable Auto Switches/Refer to auto switch guide for further information on auto switches.

<u> </u>	nicable Auto Sv	VILCIICS/I	neie	i to auto switci	guide io	rurureri	liornation	on auto switc	illes.									
			light	VA Citation and	L	oad volta	ge	Auto swite	Auto switch model		Lead wire length [m]			[m]	D			
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)	D	C	AC	Perpendicular	In-line	0.5 (—)		3 (L)	5 (Z)	None (N)	Pre-wired connector	Applica	ble load	
ج				3-wire (NPN)		5 V, 12 V		M9NV	M9N	•			0	0	0	IC circuit		
switch				3-wire (PNP)		5 V, 12 V		M9PV	M9P	•			0	0	0	10 Circuit		
				2-wire		12 V		M9BV	M9B	•			0	0	0	_		
욕	Diagnostic indication (2-colour indication) Gromme			3-wire (NPN)		5 V, 12 V		M9NWV	M9NW	•			0	0	0	IC circuit	Delevi	
		Carommei	Carommei	Yes	es 3-wire (PNP)	24 V	V 3 v, 12 v	_	M9PWV	M9PW	•			0	0	0	io circuit	Relay, PLC
state				2-wire	wire	12 V		M9BWV	M9BW	•			0	0	0	_	I LO	
5				3-wire (NPN)		5 V. 12 V		M9NAV**	M9NA**	0	0		0	_	0	IC circuit		
Solid	Water resistant (2-colour indication)			3-wire (PNP)		5 V, 12 V		M9PAV **	M9PA **	0	0		0	_	0	io circuit		
ű	(2-colour malcation)			2-wire		12 V		M9BAV **	M9BA**	0	0		0	_	0	_		
Reed o switch				Yes	3-wire (NPN equivalent)	_	5 V	_	A96V	A96	•	_	•	_	_	_	IC circuit	_
		Grommet		2-wire	24 V	V 12 V	100 V	A93V	A93	•	_			—	_	_	Relay,	
auto				No	2-wire	24 V	12 V	100 V or less	A90V	A90	•	_		_	_	_	IC circuit	PLC

- ** Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. Please consult with SMC regarding water resistant types with the above model numbers.
- * Lead wire length symbols: 0.5 m ······ (Example) M9NW

1 m M (Example) M9NWM 3 m L (Example) M9NWL 5 m Z (Example) M9NWZ

- * Solid state auto switches marked with "O" are produced upon receipt of order.

 * Mounting bracket (BMY3-016) is separately required to retrofit the above auto
- * There are other applicable auto switches other than listed above. For details, refer to page 15.
- * For details about auto switches with pre-wired connector, refer to auto switch guide.
- * Auto switches are shipped together, (but not assembled). (For details about auto switch mounting, refer to page 15.)

Mechanically Jointed Rodless Cylinder Linear Guide Type Series MY1H

Specifications

Bor	re size [mm]	25	25 32 40				
Fluid		Air					
Action			Double acting				
Operating	pressure range	0	.1 to 0.8 MPa				
Proof pressure 1.2 MPa							
Ambient a	nd fluid temperature	5 to 60°C					
Cushion			Air cushion				
Lubrication	on		Non-lube				
Stroke ler	ngth tolerance	+1.8 0					
Piping	Front/Side/Back port	Rc	Rc1/4				
port size	Bottom port	Rc1/16	Rc1/8				

Lock Specifications

Bore size [mm]	25	32	40		
Lock position	One end (Selectable), Both ends				
Holding force (Max.) [N]	270	270 450			
Fine stroke adjustment range [mm]	0 to -11.5	0 to -12	0 to -16		
Backlash	1 mm or less				
Manual release	Possible (Non-lock type)				

Made to Order

(For details, refer to pages 17 and 18.)

Symbol	Specifications
-XB10	Intermediate stroke (Using exclusive body)
-XB11	Long stroke
-XB22	Shock absorber/soft type RJ series mounted
-XC56	With knock pin holes
-X168	Helical insert thread

Piston Speed

В	ore size [mm]	25 to 40		
Without stroke a	djustment unit	100 to 1000 mm/s		
Stroke	A unit	100 to 1000 mm/s Note 1)		
adjustment unit	L unit and H unit	100 to 1500 mm/s Note 2)		

Note 1) Be aware that when the stroke adjustment range is increased with the adjustment bolt, the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges on page 4, the piston speed should be 100 to 200 mm/s.

Note 2) The piston speed is 100 to 1000 mm/s for centralised piping.

Note 3) Use at a speed within the absorption capacity range. Refer to page 4.

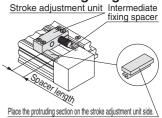
Stroke adjustment Unit Specifications

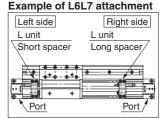
		•									
Bore size [mm]			25		32			40			
Unit symbol		Α	L	Н	Α	L	Н	Α	L	Н	
Configuration		With adjustment bolt	RB1007 + with adjustment bolt	RB1412 + with adjustment bolt	With adjustment bolt	RB1412 + with adjustment bolt	RB2015 + with adjustment bolt	With adjustment bolt	RB1412 + with adjustment bolt	RB2015 + with adjustment bolt	
Stroke adjust- ment range by	Without spacer	0 to -11.5				0 to −12			0 to -16		
intermediate	With short spacer		–11.5 to –23			−12 to −24			−16 to −32		
fixing spacer [mm]	With long spacer		-23 to -34.5		−24 to −36			−32 to −48			

st Stroke adjustment range is applicable for one side when mounted on a cylinder.

Stroke Adjustment Unit Symbol

9	Stroke Adjustinent Onit Symbol											
						Right	side strok	e adjustn	nent unit			
			Without	A: With adjustment bolt		ent bolt	L: With low load shock absorber + adjustment bolt			H: With high load shock absorber + adjustment bolt		
			unit		With short spacer	With long spacer		With short spacer	With long spacer		With short spacer	With long spacer
unit	Wit	hout unit	_	SA	SA6	SA7	SL	SL6	SL7	SH	SH6	SH7
		djustment bolt	AS	Α	AA6	AA7	AL	AL6	AL7	AH	AH6	AH7
ustment		With short spacer	A6S	A6A	A6	A6A7	A6L	A6L6	A6L7	A6H	A6H6	A6H7
usti		With long spacer	A7S	A7A	A7A6	A 7	A7L	A7L6	A7L7	A7H	A7H6	A7H7
adii		oad shock absorber +	LS	LA	LA6	LA7	L	LL6	LL7	LH	LH6	LH7
troke	adjustment	With short spacer	L6S	L6A	L6A6	L6A7	L6L	L6	L6L7	L6H	L6H6	L6H7
stro	bolt	With long spacer	L7S	L7A	L7A6	L7A7	L7L	L7L6	L7	L7H	L7H6	L7H7
side	H: With high	load shock absorber +	HS	HA	HA6	HA7	HL	HL6	HL7	Н	HH6	HH7
	- adjustations	With short spacer	H6S	H6A	H6A6	H6A7	H6L	H6L6	H6L7	Н6Н	Н6	Н6Н7
Le	bolt	With long spacer	H7S	H7A	H7A6	H7A7	H7L	H7L6	H7L7	H7H	H7H6	H7


- * Intermediate fixing spacer is not available for end lock mounting side.
- * Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.


Shock Absorber Model for L and H Units

Time	Stroke	Bore size [mm]				
Type	adjustment unit	25	32	40		
Standard	L	RB1007	RB1412			
(Shock absorber/RB series)	Н	RB1412	RB2015			
Shock absorber/soft type	L	RJ1007H	RJ14	412H		
RJ series mounted (-XB22)	Н	RJ1412H	_	_		

- * The shock absorber service life is different from that of the MY1H cylinder depending on operating conditions. Refer to the Series RB/RJ Specific Product Precautions for the replacement period.
- * Shock absorber/soft type RJ series mounted (-XB22) is made to order. For details, refer to page 17.

Stroke adjustment unit mounting diagram

Shock Absorber Specifications

SHOCK AD	solbel 3	pecifications				
Mod	RB 1007	RB 1412	RB 2015			
Max. absorbe	d energy [J]	5.9	19.6	58.8		
Stroke absor	7	12	15			
Max. collision	speed [mm/s]	1500	1500	1500		
Max. operating freq	uency [cycle/min]	70	45	25		
Spring	Extended	4.22	6.86	8.34		
force [N]	Retracted	6.86	15.98	20.50		
Operating temper	ature range [°C]	5 to 60				

^{*}The shock absorber service life is different from that of the MY1H cylinder depending on operating conditions. Refer to the Series RB Specific Product Precautions for the replacement period.

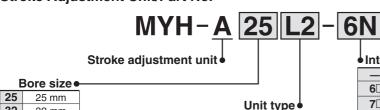
Theoretical Output

								Unit: N
Bore	Piston	Operating pressure living						
size [mm]	area [mm²]	0.2	0.3	0.4	0.5	0.6	0.7	0.8
25	490	98	147	196	245	294	343	392
32	804	161	241	322	402	483	563	643
40	1256	251	377	502	628	754	879	1005

Note) Theoretical output [N] = Pressure [MPa] x Piston area [mm²]

Weight

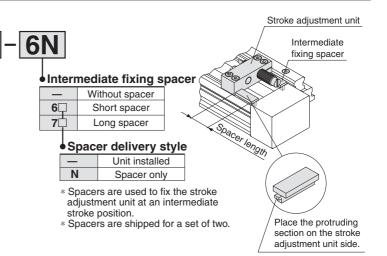
							Unit: kg
	Bore size [mm]	Basic	Additional weight per each	Side support bracket weight (per set)	Stroke ad	justment u (per unit)	nit weight
		weight	50 mm of stroke	A/B type weight	A unit weight	L unit weight	H unit weight
	25	2.17	0.30	0.02	0.04	0.07	0.11
	32	4.37	0.46	0.04	0.08	0.14	0.23
	40	5.84	0.55	0.08	0.12	0.19	0.28


Calculation: (Example) MY1H25-300AZ

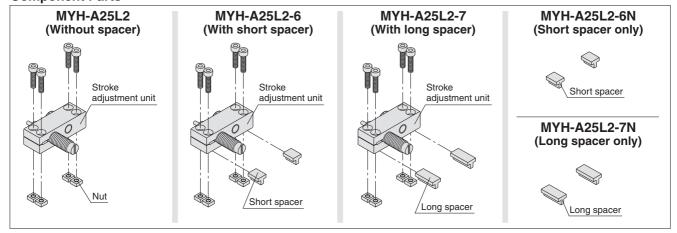
Basic weight 2.17 kg Cylinder stroke 300 mm stroke Additional weight 0.30 kg/50 mm stroke A unit weight 0.04 kg

 $2.17 + 0.30 \times 300 \div 50 + 0.04 \times 2 \approx 4.05 \text{ kg}$

Options



Bore Size						
25	25 mm					
32	32 mm					
40	40 mm					


		7 0 0
Symbol	Stroke adjustment unit	Mounting position
A1	A unit	Left
A2	A uniit	Right
L1	L unit	Left
L2	L UIIII	Right
H1	H unit	Left
H2	ri uniit	Right

Note) For details about adjustment range, refer to page 2.

* When ordering the intermediate fixing spacer for the stroke adjustment unit, the intermediate fixing spacer is shipped together.

Component Parts

^{*} Nuts are equipped on the cylinder body.

Side Support/Part No.

Bore size [mm]	25	32	40
Side support A	MY-S25A	MY-S32A	MY-S40A
Side support B	MY-S25B	MY-S32B	MY-S40B

For details about dimensions, etc., refer to page 14. Side supports consist of a set of right and left support.

Cushion Capacity

Cushion Selection

<Air cushion>

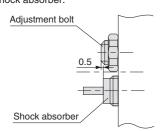
Air cushions are a standard feature on mechanically jointed rodless cylinders.

The air cushion mechanism is incorporated to prevent excessive impact of the piston with high kinetic energy at the stroke end. The purpose of air cushion, thus, is not to decelerate the piston near the stroke end.

The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

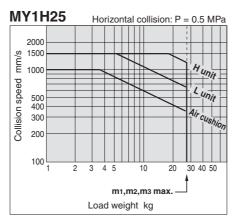
<Stroke adjustment unit with shock absorber>
Use this unit when operating with a load and speed exceeding the air cushion limit line, or when cushioning is required outside of the effective air cushion stroke range due to stroke adjustment.

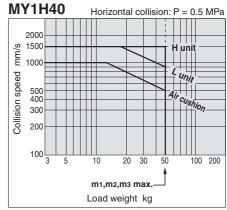
L unit

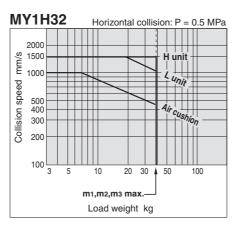

Use this unit when cushioning is necessary outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line and below the L unit limit line.

H unit

Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.


⚠ Caution


Refer to the below figure when using the adjustment bolt to perform stroke adjustment. When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjustment bolt at the position where it protrudes approximately 0.5 mm from the shock absorber.



2. Do not use a shock absorber together with air cushion.

Absorption Capacity of Air Cushion and Stroke Adjustment Units

Air Cusmon 3	Unit: mm
Bore size [mm]	Cushion stroke
25	15
32	19
40	24

Air Cuchion Stroke

Calculation of Absorbed Energy for Stroke Adjustment Unit with Shock Absorber Linit Name

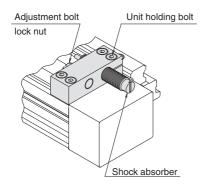
<u> </u>			Offic. 14-111
	Horizontal collision	Vertical collision (Downward)	Vertical collision (Upward)
Type of impact	<u>m</u> <u>s</u>	V m	G+ B
Kinetic energy E1		$\frac{1}{2}\text{m}{\cdot}\text{V}^2$	
Thrust energy E 2	F⋅s	F·s + m·g·s	F·s – m·g·s
Absorbed energy		E1 + E2	

Symbols

- υ : Speed of impact object [m/s]
- F: Cylinder thrust [N]
- s: Shock absorber stroke [m]
- m: Weight of impact object [kg]
- g: Gravitational acceleration (9.8 m/s²)

Note) The speed of the impact object is measured at the time of impact with the shock absorber.

Series MY1H Specific Product Precautions 1


Be sure to read the below before handling. Refer to back cover for Safety Instructions. For Actuator and Auto Switch Precautions, refer to "Handling Precautions for SMC Products" (M-E03-3) and Operation Manual. Please download it via our website http://www.smcworld.com

Operating Precautions

⚠ Caution

Use caution not to get your hands caught in the unit.

When using a product with stroke adjustment unit, the space between
the slide table (slider) and the stroke adjustment unit becomes narrow
at the stroke end, causing a danger of hands getting caught. Install a
protective cover to prevent direct contact with the human body.

<Fastening of unit>

The unit can be secured by evenly tightening the four unit holding bolts.

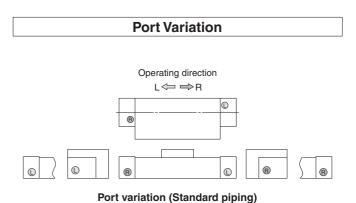
Tightening Torque for Stroke

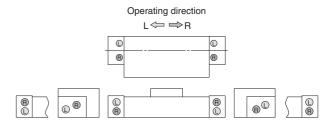
Adjustment Unit Holding Bolts Unit: N·m

Bore size [mm]	Tightening torque
25	1.8
32	3.5
40	5.8

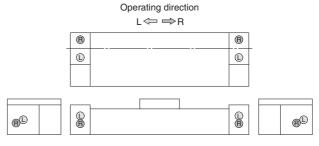
^Caution

Do not operate with the stroke adjustment unit fixed in an intermediate position.


When the stroke adjustment unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In that case, use a short spacer or a long spacer. For other lengths, please consult with SMC. (Refer to "Tightening Torque for Stroke Adjustment Unit Holding Bolts.")


<Adjustment bolt stroke adjustment>

Loosen the adjustment bolt lock nut, and adjust the stroke from the lock cover side using a hexagon wrench. Then, retighten the lock nut.

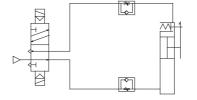

<Shock absorber stroke adjustment>

Loosen the two unit holding bolts at the shock absorber side, turn the shock absorber and adjust the stroke. Then, uniformly retighten the unit holding bolts to secure the shock absorber.

Port variation (Centralised piping)

Port variation (End lock)

Series MY1H Specific Product Precautions 2


Be sure to read the below before handling. Refer to back cover for Safety Instructions. For Actuator and Auto Switch Precautions, refer to "Handling Precautions for SMC Products" (M-E03-3) and Operation Manual. Please download it via our website http://www.smcworld.com

With End Lock

Recommended Pneumatic Circuit

⚠ Caution

This is necessary for the correct locking and unlocking actions.

Operating Precautions

⚠ Caution

1. Do not use 3-position solenoid valves.

Avoid use in combination with 3-position solenoid valves (especially closed centre metal seal types). If pressure is trapped in the port on the lock mechanism side, the cylinder cannot be locked.

Furthermore, even after being locked, the lock may be released after some time due to air leaking from the solenoid valve and entering the cylinder.

2. Back pressure is required when releasing the lock.

Before starting operation, be sure to control the system so that air is supplied to the side without the lock mechanism (in case of locks on both ends, the side where the slide table is not locked) as shown in the figure above. There is a possibility that the lock may not be released. (Refer to "Lock Release.")

- **3.** Release the lock when mounting or adjusting the cylinder. If mounting or other work is performed when the cylinder is locked, the lock unit may be damaged.
- 4. Operate at 50% or less of the theoretical output.

If the load exceeds 50% of the theoretical output, this may cause problems such as failure of the lock to release, or damage to the lock unit.

5. Do not operate multiple cylinders in synchronisation. Avoid applications in which two or more end lock cylinders are synchronised to move one workpiece, as one of the cylinder locks may not be able to release when required.

6. Use a speed controller with meter-out control.

Lock cannot be released occasionally by meter-in control.

7. Be sure to operate completely to the cylinder stroke end on the side with the lock.

If the cylinder piston does not reach the end of the stroke, locking and unlocking may not be possible. (Refer to "End Lock Mechanism Adjustment.")

Operating Pressure

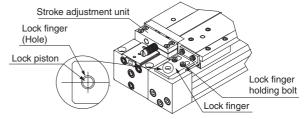
⚠ Caution

 Supply air pressure of 0.15 MPa or higher to the port on the side that has the lock mechanism, as it is necessary for disengaging the lock

Exhaust Speed

1. Locking will occur automatically if the pressure applied to the port on the lock mechanism side falls to 0.05 MPa or less. In the cases where the piping on the lock mechanism side is long and thin, or the speed controller is separated at some distance from the cylinder port, the exhaust speed will be reduced. Take note that some time may be required for the lock to engage. In addition, clogging of a silencer mounted on the solenoid valve exhaust port can produce the same effect.

Relation to Cushion


⚠ Caution

 When the air cushion on the lock mechanism side is in a fully closed or nearly closed state, there is a possibility that the slide table will not reach the stroke end, in which case locking will not occur.

End Lock Mechanism Adjustment

↑ Caution

- The end lock mechanism is adjusted at the time of shipping. Therefore, adjustment for operation at the stroke end is unnecessary.
- 2. Adjust the end lock mechanism after the stroke adjustment unit has been adjusted. The adjustment bolt and shock absorber of the stroke adjustment unit must be adjusted and secured first. Locking and unlocking may not occur otherwise.
- 3. Perform fine adjustment of the end lock mechanism as follows. Loosen the lock finger holding bolts, and then adjust by aligning the centre of the lock piston with the centre of the lock finger hole. Secure the lock finger.

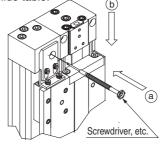
Lock Release

<u> Marning</u>

1. Before releasing the lock, be sure to supply air to the side without the lock mechanism, so that there is no load applied to the lock mechanism when it is released. (Refer to "Recommended Pneumatic Circuit.") If the lock is released when the port on the side without the lock is in an exhaust state, and with a load applied to the lock unit, the lock unit may be subjected to an excessive force and be damaged.

Furthermore, sudden movement of the slide table is very dangerous.

Manual Release

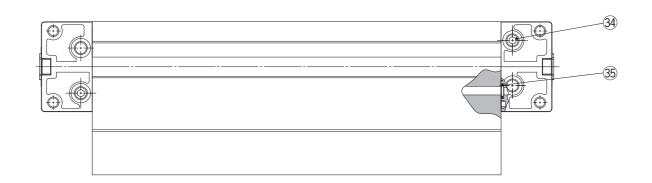


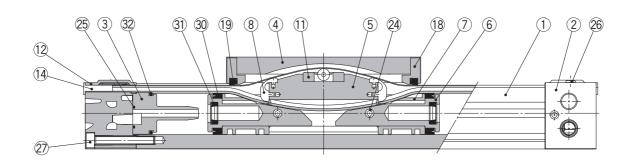
1. When manually releasing the end lock, be sure to release the pressure.

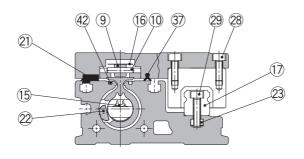
If it is unlocked while the air pressure still remains, it will lead to damage a workpiece, etc. due to unexpected lurching.

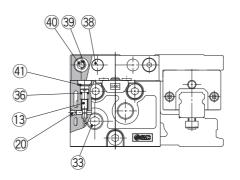
2. Perform manual release of the end lock mechanism as follows.

Push the lock piston down with a screwdriver, etc., and move the slide table.




Other handling precautions regarding mounting, piping and environment are the same as the standard series.




Construction

Standard type

Component Parts

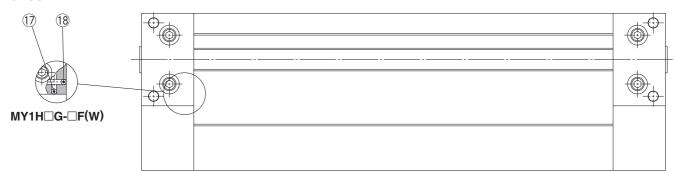
COII	iponeni Paris		
No.	Description	Material	Note
1	Cylinder tube	Aluminium alloy	Hard anodised
2	Head cover	Aluminium alloy	Painted
3	Cushion boss	Special resin	
4	Slide table	Aluminium alloy	Hard anodised
5	Piston yoke	Aluminium alloy	Chromated
6	Piston	Aluminium alloy	Chromated
7	Wear ring	Special resin	
8	Belt separator	Special resin	
9	Guide roller	Special resin	
10	Parallel pin	Stainless steel	
11	Coupler	Sintered iron material	
12	Head plate	Stainless steel	
13	Cushion needle	Rolled steel	Nickel plated
14	Belt clamp	Special resin	
17	Guide	_	
18	End cover	Special resin	
20	Steel ball	Carbon tool steel	
21	Bearing	Special resin	
22	Magnet	Rare earth magnet	
23	Square nut	Carbon steel	Chromated
24	Spring pin	Bearing steel	Black zinc chromated
26	Thin head screw	Chromium molybdenum steel	Chromated
27	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
28	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
29	Hexagon socket head cap screw	Chromium molybdenum steel	Chromated
33	Hexagon socket head taper plug	Carbon steel	Chromated (Centralised piping: 10 pcs.)
34	Hexagon socket head taper plug	Carbon steel	Chromated (Centralised piping: 4 pcs.)
38	Stopper	Carbon steel	
39	Spacer	Stainless steel	
40	Hexagon socket button head screw	Chromium molybdenum steel	Chromated
41	CR retaining ring	Spring steel	
42	Seal magnet	Rubber magnet	
			·

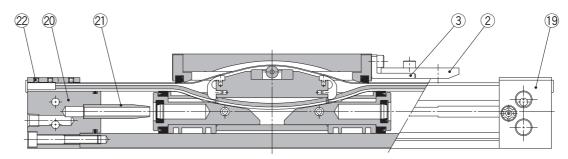
Replacement Parts: Seal Kit

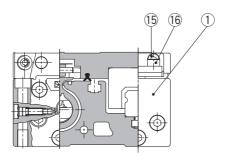
	iacomonic i artor coa					
No.	Description	Material	Qty.	MY1H25	MY1H32	MY1B40
15	Seal belt	Special resin	1	MY25-16C-Stroke	MY32-16C-Stroke	MY40-16A-Stroke
16	Dust seal band	Stainless steel	1	MY1B25-16B-Stroke	MY1B32-16B-Stroke	MY1B40-16B-Stroke
25	Cushion boss gasket	NBR	2	MYB25-16GA5900	MYB32-16GA5901	MYB40-16GA5902
36	O-ring	NBR	2	ø5.1 x ø3 x ø1.05	ø7.15 x ø3.75 x ø1.7	ø7.15 x ø3.75 x ø1.7
37	Side scraper	Special resin	2	MYH25-15BK2902B	MYH32-15BK2903B	MYH40-15BK2904B
19	Scraper	NBR	2			
30	Piston seal	NBR	2			
31	Cushion seal	NBR	2	MY1H25-PS	MY1H32-PS	MY1H40-PS
32	Tube gasket	NBR	2			
35	O-ring	NBR	2			

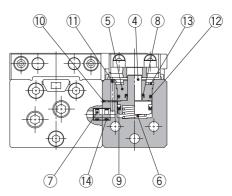
^{*} Seal kit includes 19, 30, 31, 32 and 35. Order the seal kit based on each bore size.

^{*} Seal kit includes a grease pack (10 g). When (\$\overline{1}\text{ or (\$\overline{1}\text{ in based on each bote size.}}\)


* Seal kit includes a grease pack (10 g). When (\$\overline{1}\text{ or (\$\overline{1}\text{ is shipped independently, a grease pack (20 g) is included.}}\)


Order with the following part number when only the grease pack is needed.


Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)


Construction

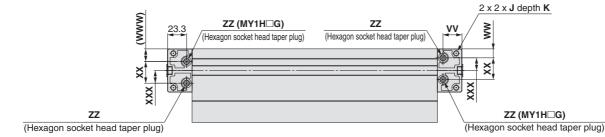
End lock

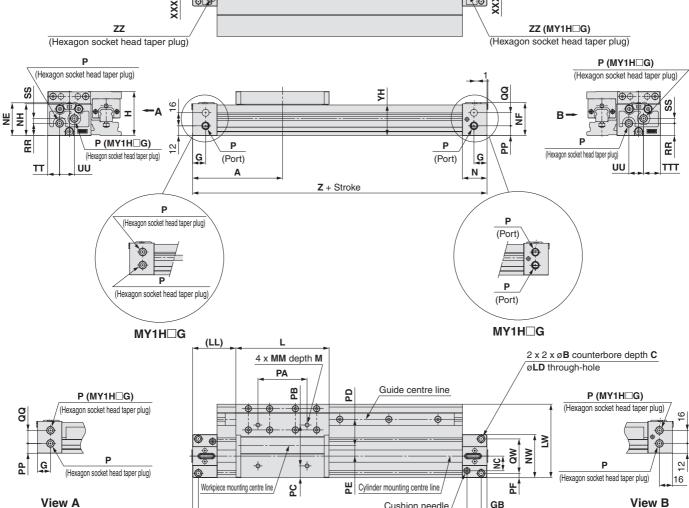
Component Parts

No. Description Material Note 1 Locking body Aluminium alloy Painte 2 Lock finger Carbon steel After quenching, 3 Lock finger bracket Rolled steel Nickel p	ed , nickel plated lated
2 Lock finger Carbon steel After quenching,	, nickel plated lated
	lated
3 Lock finger bracket Rolled steel Nickel p	
	oless nickel plated
4 Lock piston Carbon tool steel After quenching, electr	ologo illollol piatoa
5 Rod cover Aluminium alloy Hard and	odised
6 Return spring Spring steel Zinc chron	mated
7 Bypass pipe Aluminium alloy Hard and	odised
10 Steel ball High carbon chromium bearing steel	
11 Steel ball High carbon chromium bearing steel	
13 Inverted internal retaining ring Carbon tool steel Nickel p	lated
15 Hexagon socket head cap screw Chromium molybdenum steel Chroma	ated
16 Hexagon socket head cap screw Chromium molybdenum steel Chroma	ated
17 Steel ball High carbon chromium bearing steel	
18 Steel ball High carbon chromium bearing steel	
19 Head cover WR Aluminium alloy Painte	ed
20 Head cover WL Aluminium alloy Painte	ed
21 Cushion ring Aluminium alloy	
22 Hexagon socket head set screw Chromium molybdenum steel Chroma	ated

Replacement Parts: Seal Kit

No.	Description	Material	Qty.	MY1H25	MY1H32	MY1H40		
8	Rod seal	NBR	1	DYR8K	DYR8K	DYR8K		
9	Piston seal	NBR	1	DYP-20	DYP-20	DYP-20		
12	O-ring	NBR	1	C-18	C-18	C-18		
14	O-ring	NBR	2	C-5	C-5	C-5		


^{*} Since the seal kit does not include a grease pack, order it separately. **Grease pack part no.: GR-S-010** (10 g)

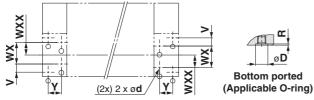


Standard Type/Centralised Piping Type

Regarding centralised piping port variations, refer to page 5.

MY1H25 32 40 - Stroke Z

Standard piping/Centralised piping


	<u> </u>					· I	<u> </u>																	
Model	Α	В	C	G	GB	Н	J	K	L	LD	LL	LW	M	MM	N	NC	NE	NF	NH	NW	Р	PA	PB	PC
MY1H25	110	9	5.5	16	24.5	54	M6 x 1	9.5	114	5.6	53	90	9	M5 x 0.8	30	18	40.2	40.5	39	53	Rc1/8	60	50	14.5
MY1H32	140	11	6.6	19	28.5	68	M8 x 1.25	16	140	6.8	70	110	13	M6 x 1	37	22	50.2	50	49	64	Rc1/8	80	60	15
MY1H40	170	14	8.5	23	35	84	M10 x 1.5	15	170	8.6	85	121	13	M6 x 1	45	26.5	62.7	62	61.5	75	Rc1/4	100	80	20.5

Q + Stroke

Model	PD	PE	PF	PG	PP	Q	QW	RR	TT	TTT	VV	ww	WWW	XXX	YH	Z	ZZ
MY1H25	32	13	5.5	7	12	206	42	15	14.5	20.5	23.3	11	15.5	15.5	37.5	220	Rc1/16
MY1H32	42	13	6.5	8	16	264	51	16	16	16	28.5	12	12	20	47	280	Rc1/16
MY1H40	37.5	23	8	9	18.5	322	59	23.5	20	20	35	14	14	23.5	59.5	340	Rc1/8

Centralise	ed pi	ping		[mm]
Model	QQ	SS	UU	XX
MY1H25	16	6	18	26.5
MY1H32	16	11	32	40
MY1H40	24	12	35	47

View B

PG

 \ast This figure shows the recommended machining dimensions of

the mounting surface when viewed from the cylinder side.
* Values inside the parentheses are those for MY1H□G.

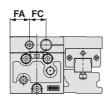
Standard	pipin	g/Ce	entra	lised	qiq b	oing [mm]	Cent
Model	WXX	Υ	d	D	R	Applicable O-ring	M
MY1H25	15.5	16.2	6	11.4	1.1		MY

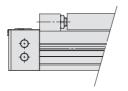
GB

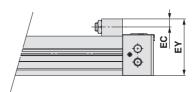
Hole Size for Centralised Piping on the Bottom (Machine the mounting side to the dimensions below.)

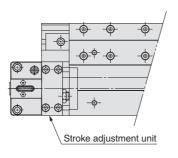
Cushion needle

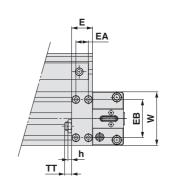
rtan aan a	A.b	9, 0			- P.P	[!!!!!]
Model	WXX	Υ	d	D	R	Applicable O-ring
MY1H25	15.5	16.2	6	11.4	1.1	00
MY1H32	20	20.4	6	11.4	1.1	C9
MY1H40	23.5	25.9	8	13.4	1.1	C11.2

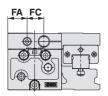

Centralise	d pipin	ig [mm]
Model	WX	V
MY1H25	26.5	10
MY1H32	40	5.5
MY1H40	47	6

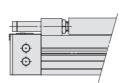


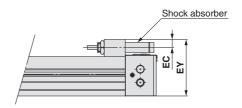

Stroke Adjustment Unit

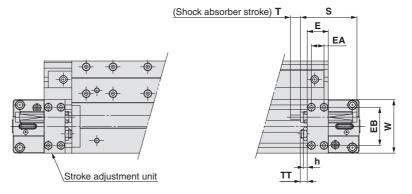

With adjustment bolt


MY1H Bore size - Stroke AZ

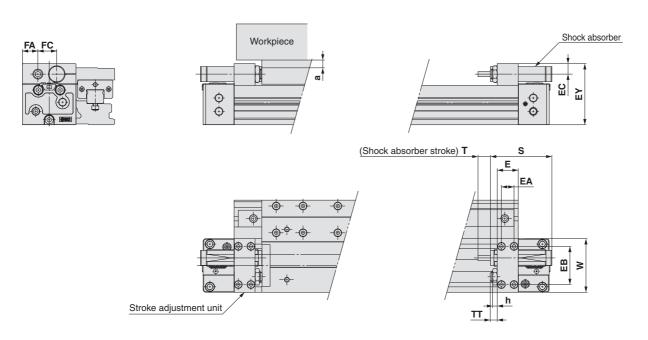





Applicable cylinder	Е	EA	EB	EC	EY	FA	FC	h	TT	W
MY1H25	18	9	40	7.5	53.5	16	21	3.5	5 (Max.16.5)	53
MY1H32	25	14	45.6	9.5	67.5	23	20	4.5	8 (Max.20)	64
MY1H40	31	19	55	11	82	24.5	26	4.5	9 (Max.25)	75


With low load shock absorber + adjustment bolt

MY1H Bore size - Stroke LZ



														[mm]
Applicable cylinder	Е	EA	EB	EC	EY	F	FA	FC	h	S	Т	TT	W	Shock absorber model
MY1H25	18	9	40	7.5	53.5	_	16	21	3.5	46.7	7	5 (Max.16.5)	53	RB1007
MY1H32	25	14	45.6	9.5	67.5	_	23	20	4.5	67.3	12	8 (Max.20)	64	RB1412
MY1H40	31	19	55	11	82	_	24.5	26	4.5	67.3	12	9 (Max.25)	75	RB1412

Stroke Adjustment Unit

With high load shock absorber + adjustment bolt MY1H Bore size - Stroke HZ

* Since the EY dimension of H unit is greater than the table top height (H dimension), when a workpiece exceeding the overall length (L dimension) of the slide table is mounted, allow a clearance of size "a" or larger at the workpiece side.

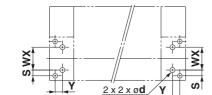
Applicable cylinder	Е	EA	EB	EC	EY	F	FA	FC	h	S	Т	TT	W	Shock absorber model	а
MY1H25	18	9	40	9	57		18	17.5	4.5	67.3	12	5 (Max.16.5)	53	RB1412	3.5
MY1H32	25	14	45.6	12.4	73	_	18.5	22.5	5.5	73.2	15	8 (Max.20)	64	RB2015	5.5
MY1H40	31	19	55	12.4	86	_	26.5	22	5.5	73.2	15	9 (Max.25)	75	RB2015	2.5

SMC

With End Lock

Dimensions for types other than end lock are identical to the standard type dimensions. For details about dimensions, etc., refer to page 10.

MY1H□-□WZ (Both ends)


Standard piping/Centralised piping

9

	-						. 9																				
Model	Α	В	С	G	GB	Н	,	J	K	L	LD	LL	LW	M	M	M	N	NC	NE	NH	NW	F	•	PA	PB	PC	PD
MY1H25	110	9	5.5	16	24.5	54	M6	x 1	9.5	114	5.6	53	90	9	M5 x	8.0 x	30	20	40.5	39	53	Rc	1/8	60	50	14.5	32
MY1H32	140	11	6.6	19	28.5	68	M8 x	1.25	16	140	6.8	70	110	13	M6	x 1	37	25	50	49	64	Rc ⁻	1/8	80	60	15	42
MY1H40	170	14	8.5	23	35	84	M10	x 1.5	15	170	8.6	85	121	13	M6	x 1	45	30.5	63	61.5	75	Rc	1/4	100	80	20.5	37.5
Model	PE	PF	PG	PP	Q	QW	RR	SS	TT	UU	VV	ww	XX	YH	Z	Z	Z	Er	ıd lock ı	mechar	nism (Si	tandard	piping	/Centra	lised p	iping)	[mm]
MY1H25	13	5.5	7	12	206	42	16	6	14.5	15	16	12.5	28	37.5	220	Rc1	I/16		Mod	del	H1	H2	L1	TL	W1	W2	W3
MY1H32	13	6.5	8	17	264	51	23	4	16	16	19	16	32	47	280	Rc1	I/16		MY1I	125	53.5	46	3	11.5	29.3	27.3	17.7

Rc1/8

22 | 23 | 19.5 | 36 | 59.5 | 340

(Applicable O-ring)

8.5 322 59 27 10.5 20

Hole Size for Centralised Piping on the Bottom
(Machine the mounting side to the dimensions below)

6.5 12

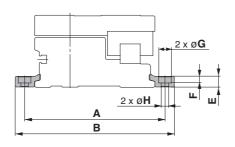
MY1H40 83 68.5 10.5 16 38 35 24.4

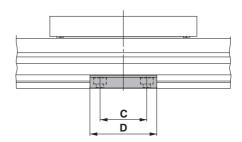
29.3 27.3 17.7

67 56

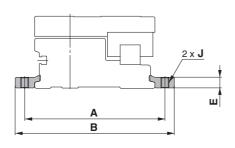
MY1H32

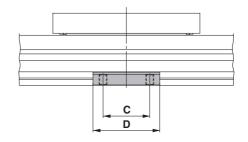
	<u>- ctanican a pipinig</u> , - cinican coa pipinig								
	Model	WX	Υ	S	d	D	R	Applicable O-ring	
M	Y1H25	28	9	7	6	11.4	1.1	00	
M	Y1H32	32	11	9.5	6	11.4	1.1	C9	
М	Y1H40	36	14	11.5	8	13.4	1.1	C11.2	



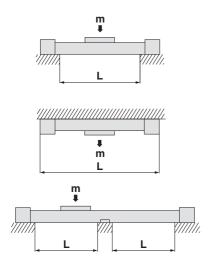

MY1H40 23 8

^{*} This figure shows the recommended machining dimensions of the mounting surface when viewed from the cylinder side.


Side Support


Side support A MY-S□A

Side support B MY-S□B



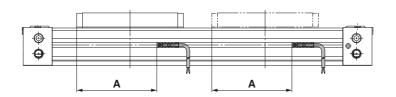
										[mm]
Part no.	Applicable cylinder	Α	В	С	D	Е	F	G	Н	J
MY-S25A	MY1H25	105	119	35	50	8	5	9.5	5.5	M6 x 1
MY-S32 ^A	MY1H32	130	148	45	64	11.7	6	11	6.6	M8 x 1.25
MY-S40 ^A	MY1H40	145	167	55	80	14.8	8.5	14	9	M10 x 1.5

^{*} Side supports consist of a set of right and left supports.

Guide to Side Support Application

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the below graph.

(800) 40 (600) (800)


⚠ Caution

- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting it. Also, for long stroke operation involving vibration and impact, use of a side support is recommended.
- Support brackets are not for mounting; use them solely for providing support.

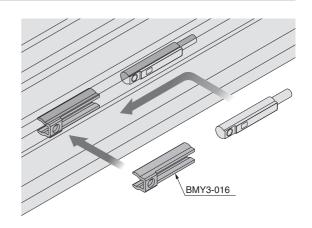
Series MY1H Auto Switch Mounting

Auto Switch Proper Mounting Position

Auto Switch Proper Mounting Position [mm]

Auto switch model	D-M9 D-M9 V D-M9 W D-M9 W V D-M9 W V D-M9 AL D-M9 AVL	D-A9□ D-A9□V
Bore size	Α	Α
25	85	81
32	116.5	112.5
40	137.5	133.5

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

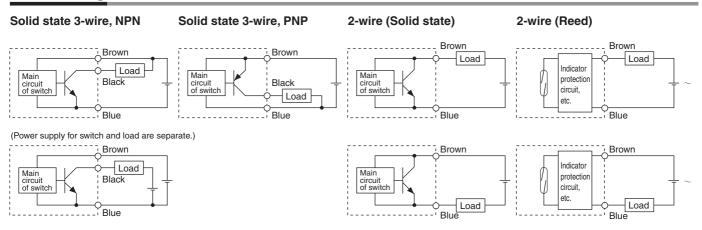

Operating Range

			[mm]		
Auto quitale model	Bore size				
Auto switch model	25	32	40		
D-M9□/M9□V					
D-M9□W/M9□WV	5.0	5.5	5.5		
D-M9□AL/M9□AVL					
D-A9□/A9□V	7.0	10.0	9.0		

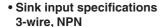
Note) Values which include hysteresis are for guideline purposes only, they are not a guarantee (assuming approximately ±30% dispersion) and may change substantially depending on the ambient environment.

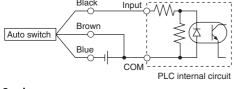
Auto Switch Mounting Bracket/Part No.

Auto switch model	Bore size [mm]			
Auto Switch model	ø25 to ø40			
D-M9□/M9□V D-M9□W/M9□WV D-M9□AL/M9□AVL D-A9□/A9□V	BMY3-016			

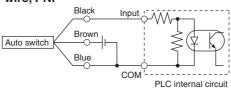


Other than the applicable auto switches listed in "How to Order", the following auto switches are mountable.

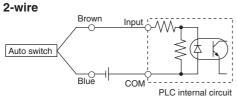

- * Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H) are also available. For details, consult with SMC.
- * With pre-wired connector is also available for solid state auto switches. For details, consult with SMC.

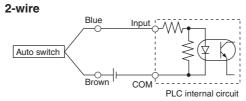

Series MY1H Auto Switches Connection and Example

Basic Wiring



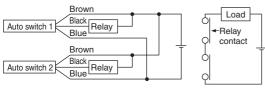
Example of Connection with PLC (Programmable Logic Controller)

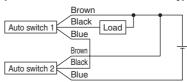




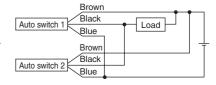
Source input specifications 3-wire, PNP

Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

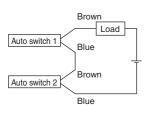



Example of AND (Series) and OR (Parallel) Connection

• 3-wire


AND connection for NPN output (Using relays)

AND connection for NPN output (Performed with auto switches only)

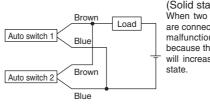


OR connection for NPN output

The indicator lights will light up when both of the auto switches are in the ON state.

2-wire 2-wire with 2-switch AND connection

When two auto switches are connected in series, malfunction may occur because the load voltage will decrease in the ON state.


The indicator lights will light up when both of the auto switches are in the ON state.

Load voltage at ON = Power supply voltage – Residual voltage x 2 pcs. = 24 V – 4 V x 2 pcs. = 16 V

Example: Power supply voltage 24 VDC

Auto switch internal voltage drop 4 V

2-wire with 2-switch OR connection

(Solid state)
When two auto switches are connected in parallel, malfunction may occur because the load voltage will increase in the OFF state.

Load voltage at OFF = Leakage current x 2 pcs. x Load impedance = 1 mA x 2 pcs. x 3 k Ω = 6 V

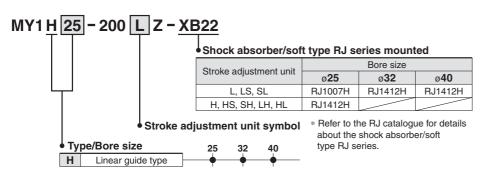
Example: Load impedance 3 $k\Omega$ Auto switch leakage current 1 mA

(Reed)

Because there is no leakage current, the load voltage will not increase the OFF However, depending on number of the auto switches in the ON state. the indicator lights may sometimes grow dim or not light up, due to the dispersion and reduction of the current flowing to the auto switches

Made to Order

Please contact SMC for detailed dimensions, specifications and lead times.

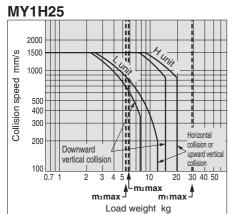

Made-to-Order List

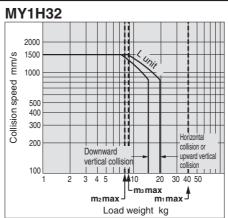
Series	Туре	Shock absorber/ soft type mounted	With knock pin holes	Helical insert thread
		-XB22	-XC56	-X168
MY1H	Basic type	•	•	•

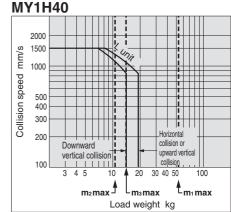
1 Shock Absorber/Soft Type RJ Series Mounted


Symbol -XB22

The shock absorber/soft type RJ series is mounted onto the standard cylinder, making a soft stop at the stroke end possible.

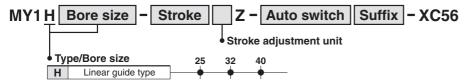

Example


How to order stroke adjustment unit



Stroke adjustment unit model
Refer to "How to Order" on page 3.

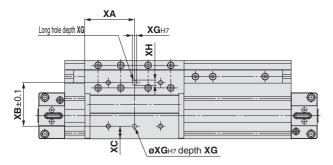
Absorption Capacity of Stroke Adjustment Units


2 With Knock Pin Holes

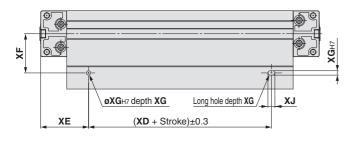
Symbol

-XC56

Cylinder with knock positioning pin hole


■ Stroke range: 601 to 1500 mm

Example) MY1H40G-200LZ-M9BW-XC56

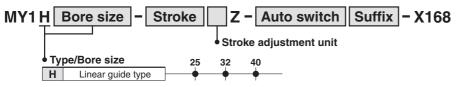

Specifications: Same as standard type

Dimensions Dimensions other than below are the same as standard type.

					[mm]
Bore size [mm]	XA	ХВ	хс	XD	XE
25	57	50	14.5	110	55
32	70	60	15	140	70
40	85	80	20.5	180	80

Mounting surface of a workpiece for the slide table

Bore size [mm]	XF	XG	хн	XJ
25	45	5	6	8
32	60	6	7	9
40	60.5	6	7	9


Mounting surface of cylinder tube

3 Helical Insert Thread

Symbol

-X168

Helical insert thread is used for the slide table mounting thread, the thread size is the same as the standard model.

Example) MY1H40G-200LZ-M9BW-X168

Specifications: Same as standard type

⚠ Safety Instructions

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

Caution indicates a hazard with a low level of risk Caution: which, if not avoided, could result in minor or moderate injury.

Warning indicates a hazard with a medium level of Warning: risk which, if not avoided, could result in death or serious injury.

Danger indicates a hazard with a high level of risk ⚠ Danger: which, if not avoided, will result in death or serious injury.

*1) ISO 4414: Pneumatic fluid power - General rules relating to systems. ISO 4413: Hydraulic fluid power – General rules relating to systems. IEC 60204-1: Safety of machinery – Electrical equipment of machines. (Part 1: General requirements)

ISO 10218-1: Manipulating industrial robots - Safety.

⚠ Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalogue information, with a view to giving due consideration to any possibility of equipment failure when configuring the

2. Only personnel with appropriate training should operate machinery and equipment.

The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.

- 3. Do not service or attempt to remove product and machinery/equipment until safety is confirmed.
 - 1. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects
 - 2. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
 - 3. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction
- 4. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following
 - 1. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
 - 2. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the
 - 3. An application which could have negative effects on people, property, or animals requiring special safety analysis.
 - 4. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.

1. The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries.

If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.

If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".

Read and accept them before using the product.

Limited warranty and Disclaimer

- 1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered.*2)
- Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
- 2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
- 3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalogue for the particular products.
 - *2) Vacuum pads are excluded from this 1 year warranty.

A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.

Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

- 1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
- 2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

info@smclt.lt

office@smc.pl

office@smc.sk

office@smc.si

nost@smc.nu

info@smc.ch

info@smcpneumatics.nl

post@smc-norge.no

postpt@smc.smces.es

info@smc-pneumatik.ru

post@smc.smces.es

info@smconomatik.com.tr

smcromania@smcromania.ro

⚠ Safety Instructions

Be sure to read "Handling Precautions for SMC Products" (M-E03-3) before using.

SMC Corporation (Europe)

☎+43 (0)2262622800 www.smc.at Austria office@smc.at Lithuania **2** +370 5 2308118 www.smclt.lt ★+32 (0)33551464 Belgium www.smcpneumatics.be info@smconeumatics.be Netherlands *****+31 (0)205318888 www.smcpneumatics.nl Bulgaria ***** +359 (0)2807670 office@smc.bg www.smc.bg Norway **2** +47 67129020 www.smc-norge.no ***** +385 (0)13707288 office@smc.hr Croatia www.smc.hr Poland **2** +48 (0)222119616 www.smc.pl Czech Republic Portugal *****+420 541424611 www.smc.cz office@smc.cz *****+351 226166570 www.smc.eu Denmark ★+45 70252900 www.smcdk.com smc@smcdk.com Romania **2** +40 213205111 www.smcromania.ro smc@smcpneumatics.ee Estonia ***** +372 6510370 www.smcpneumatics.ee Russia **2**+7 8127185445 www.smc-pneumatik.ru Finland *****+358 207513513 www.smc.fi smcfi@smc.fi Slovakia ## +421 (0)413213212 www.smc.sk France ***** +33 (0)164761000 www.smc-france.fr promotion@smc-france.fr Slovenia ***** +386 (0)73885412 www.smc.si ***** +49 (0)61034020 info@smc.de www.smc.eu Germany www.smc.de Spain *****+34 902184100 **2** +30 210 2717265 www.smchellas.gr sales@smchellas.gr Greece Sweden **2** +46 (0)86031200 www.smc.nu Hungary *****+36 23511390 www.smc.hu office@smc.hu Switzerland *****+41 (0)523963131 www.smc.ch Ireland ***** +353 (0)14039000 www.smcpneumatics.ie sales@smcpneumatics.ie Turkey **2** +90 212 489 0 440 www.smcpnomatik.com.tr mailbox@smcitalia.it **2** +39 0292711 www.smcitalia.it Italy UK ***** +44 (0)845 121 5122 www.smcpneumatics.co.uk sales@smcpneumatics.co.uk Latvia *****+371 67817700 info@smclv.lv

SMC CORPORATION Akihabara UDX 15F, 4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPAN Phone: 03-5207-8249 FAX: 03-5298-5362